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Abstract

It is customary to design a control system in such a way that, whatever the chosen control
satisfying the constraints, the system does not enter so-called unsafe regions. This work introduces
a general computer-assisted methodology to prove that a given finite-dimensional linear control
system with compact constraints avoids a chosen unsafe set at a chosen final time T . Relying on
support hyperplanes, we devise a functional such that the property of interest is equivalent to finding
a point at which the functional is negative. Actually evaluating the functional first requires time-
discretisation. We thus provide explicit, fine discretisation estimates for various types of matrices
underlying the control problem. Second, computations lead to roundoff errors, which are dealt with
by means of interval arithmetic. The control of both error types then leads to rigorous, computer-
assisted proofs of non-reachability of the unsafe set. We illustrate the applicability and flexibility of
our method in different contexts featuring various control constraints, unsafe sets, types of matrices
and problem dimensions.

Keywords: constrained linear control systems, reachability analysis, computer-assisted proofs, interval
arithmetic

AMS classification: 49M29, 49M25, 65G30, 34H05.

1 Introduction

This article is dedicated to the rigorous study of non-reachable states of a constrained controlled linear
system. More precisely, we are interested in guaranteeing that, at a given time T > 0, the control
system cannot enter a prescribed unsafe region, whatever the choice of control satisfying the given
constraints.

We consider the linear autonomous (time invariant) control system{
ẏ(t) = Ay(t) +Bu(t),

y(0) = y0,
(S)

where y0 ∈ Rn and A ∈ Rn×n, B ∈ Rn×m.
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Given y0 ∈ Rn, a closed convex set Yf ⊂ Rn, a time horizon T > 0 and a compact set U ⊂ Rm,
we investigate the (U-)constrained reachability problem, i.e., the problem of determining if there exists
a control u such that the solution to (S) with control u satisfies y(T ) ∈ Yf , under the additional
constraint that u(t) ∈ U for a.e. t ∈ (0, T ). If such a control exists, we shall say that Yf is U-reachable
from y0 in time T .

Our aim is to develop a general, flexible and certifiable methodology, resting on numerical compu-
tations, to show that Yf is not U-reachable from y0 in time T . Ultimately, the interested user should
be able to provide all parameters A, B, T , y0, U and Yf and, whenever that is the case, be returned
the mathematically certified assertion that Yf is not U-reachable from y0 in time T .

1.1 Methodology: non-reachability criterion and certification issues

Support functions. Throughout, finite-dimensional spaces Rn, Rm will be endowed with the stan-
dard Euclidean inner products. If we have C ⊂ H with H a Hilbert space, σC will denote the support
function of C defined by

∀x ∈ C, σC(x) := sup
y∈C

⟨x, y⟩.

Non-reachability by separation. By means of separating hyperplanes, we will establish a necessary
and sufficient criterion for non-reachability, involving a suitably defined function J : Rn → R ∪ {+∞},
in the following form:

(∃pf ∈ Rn, J(pf ) < 0) ⇐⇒ Yf is not U-reachable from y0 in time T . (1)

The precise definition of J (together with Figure 1 to convey the corresponding intuition) will be given
in Section 2.1, and involves the support functions σU and σYf

, which we assume to be known explicitly.
The proof of (1) is the object of Proposition 2. In the case where pf ∈ Rn such that J(pf ) < 0 is

found, we will say that pf is a dual certificate (that Yf is not U-reachable from y0 in time T ). One should
note that such a dual certificate only proves the non-reachability at time T , and not for all t ∈ [0, T ].
Sufficient conditions for the non-reachability at all times t ∈ [0, T ] are proposed in Proposition 7 and
the following remark.

Computer-assisted proof of non-reachability. In what follows, we will exploit this criterion by
producing vectors that satisfy it numerically. This raises questions pertaining to the error propagation
inherent to every numerical method. More precisely:

Certified approach for non-reachability.

• How can one evaluate the functional J , in order to exhibit an element pf ∈ Rn satisfying
property (1) numerically?

• How can one then certify the numerical result, which implies non-reachability? That
is, guarantee that it is not flawed by various numerical approximations?

In order to carry out these two steps, there will in turn be two main difficulties.

(i) We will not have access to J but only to proxies obtained by discretisation, which we generically
denote Jd. Indeed, the definition of J involves a time-integral, as well as the solution to a linear
ODE involving A∗ (which amounts to computing the matrix exponentials t 7→ etA

∗). When these
are not known explicitly, we will resort to simple time discretisation schemes (implicit Euler, etc)
and provide a bound on the error in terms of discretisation parameters. One key aspect
of our approach is that these bounds must be derived with explicit constants.
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(ii) All computations will lead to round-off errors, which must be accounted for. To that end, we
will use a Matlab/Octave toolbox called INTLAB (INTerval LABoratory) [35]. This code is an
interval arithmetic library, entirely written in Matlab. It provides tools for performing numerical
computations with arbitrary-precision arithmetic.

All in all, if for a given pf ∈ Rn one lets Ed(pf ) (for the discretisation errors) and Er(pf ) (for the
round-off errors), we will have

J(pf ) ∈ [Jd(pf )− Ed(pf )− Er(pf ), Jd(pf ) + Ed(pf ) + Er(pf )]. (2)

Hence, we will take advantage of the fact that if

Jd(pf ) + Ed(pf ) + Er(pf ) < 0,

then yf is not U-reachable from y0 in time T .
Here we stress that the notion of certification we are concerned with has to do with the numerical

part of our work. The starting point of this work is a theoretical necessary and sufficient condition for
non-reachability. For a given system, we can determine whether it is satisfied numerically. Certifying
this part then makes this numerical result theoretically sound, thus producing a computer-assisted
proof. Another key aspect of our methodology is to return a dual certificate pf that certifies the
corresponding mathematical statement: consequently, any user with access to its own discretised ver-
sion of the functional J with corresponding error estimates, can verify the result upon using interval
arithmetic.

1.2 State of the art & connections to existing results

The notion of constraint-free controllability of autonomous linear systems dates back to Kalman’s
seminal works. Its generalisation to infinite-dimensional systems is more recent. For further details on
these concepts, we refer to the review books [10, 23]. Since the 70’s, but more specifically in recent
years, several works have investigated the addition of further constraints, satisfied whether by the
control itself, or by the controlled trajectory.

Some of these works are theoretical in nature, with a focus on unbounded constraints. Particular
interest has been given to the problems of exact controllability by positive controls due to their physical
relevance [6, 12, 15, 24, 28, 29, 33]. Attention was also paid to adding constraints on the controlled
trajectory [11,25,26]. Unbounded (sparsity) constraints have also been considered [30,36].

In this article, we focus on the implementation of a method to numerically certify that a set of
unsafe states is unreachable at a given time T > 0, for compact constraint sets on the control. Our
approach is specific to autonomous linear systems. Regarding more general dynamical systems, closely
related questions have been addressed in the past: for instance, how to numerically approximate the
reachable set at time T , or guarantee that computed trajectories will not meet the given unsafe set at
any time t > 0.

In finite dimension, several methods have been elaborated to provide approximations of the reachable
set (for example, see the recent survey [1]): among others, let us mention the use of Hamilton-Jacobi
type equations [9, 27], the design of barrier functions for trajectories to avoid unsafe regions [16, 31],
and set propagation [1]. Let us roughly describe each of these approaches.

In [9,27], a backwards reachable set is characterised as the zero sublevel set of the viscosity solution
to a Hamilton-Jacobi type partial differential equation, with important applications to the safety of
automated systems. This is formally related to our approach, as we also characterise non-reachability
by the existence of negative values for a certain numerical criterion. As we will see, in this paper the
convexity of the reachable set and the linearity of the system allow us to exploit this characterisation
to produce numerical certificates of non-reachability.
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In [16, 31], the authors introduce the notion of barrier functions, appropriately defined from the
system dynamics to ensure that trajectories do not enter an unsafe zone. An important element of
these methods is that these certificates are valid for all positive times t > 0, a very strong property
which is not required in other methods, and in particular in this article. Moreover, the computation of
barrier certificates for a given system remains a challenging problem, both theoretically and numerically.

Set propagation is a class of methods for computing a guaranteed overapproximation or underap-
proximation of the reachable set of continuous systems. Starting from the set of initial states, the idea
is to iteratively and adequately propagate a sequence of sets according to the system dynamics [13],
which are guaranteed to contain, or be contained in, the reachable set. Such an algorithm has been
developed in [19, 20] for finite-dimensional compact convex constraints. An important hurdle is then
the so-called wrapping effect, which is the accumulation of computational errors. The crux of set prop-
agation techniques is to circumvent this difficulty by using appropriate propagation formulae. In this
article, the wrapping effect is avoided using duality and considering the solution to a single backward
equation.

Separation arguments, as used in this article, already appear in reachability analysis [2, 17–20].
However, an important contribution we make is recasting it in terms of the sign of the function J , in
such a way that interval arithmetic can be applied to certify the end result – a feature which seldom
appears in the literature.

Using our approach, one can prove that the reachable set is contained in a half-space. Computing
several such half-spaces allows for the creation of a bounded convex polytope guaranteed to contain
the reachable set, but this can quickly become computationally expensive, especially as the dimension
of the problem increases. There exist other ways to over- or under-approximate reachable sets, which
rely on geometric properties. In the special case of ellipsoidal constraint sets, we refer to [17,18]. More
generally, for compact convex constraints, the reachable set can be approximated from the outside using
support functions [2].

While the above-mentioned works provide theoretical criteria for finite dimensions, the case of
infinite dimensions remains largely open.

Extensions and perspectives. We make the assumption that the support functions σU and σYf

are known exactly. If it were not the case, our approach could be extended, provided that one has a
procedure to numerically evaluate them, together with a way to control the corresponding error.

The approach we have developed can be adapted mutatis mutandis to non-homogeneous non-
autonomous linear systems of the form ẋ(t) = A(t)x(t) + B(t)u(t) + v(t), for some v ∈ L2(0, T ;Rn).
The price to pay lies in the error formulae, where the exponential matrix etA is replaced by the resolvent
associated with the function A(·). The resulting formulae would then be slightly less accurate than
those we obtained.

Another relevant issue would concern non-reachability in fixed time for non-linear control systems
under control sampling, see e.g. [5]. This amounts to imposing specific constraints on the control,
assuming it to be piecewise constant with values in a given prescribed set. In the case of a linear system,
our approach would apply provided that one provides efficient ways to compute or approximate the
support function of these particular types of constraint sets.

In the same vein, the reachability criterion can be extended without effort to Hilbert spaces (see
for instance [22] for infinite-dimensional time optimal control problems). This is why we expect our
method to accommodate infinite-dimensional linear control systems, provided that the space
discretisation errors are also estimated. This will be the subject of further work, focusing in particular
on the heat equation.

Our work adresses non-reachability. The natural complementary question is that of reachability:
can one provide certified methods to show that a target yf (or more generally, a set Yf ) is reachable?
We intend to tackle this problem as well, using similar geometric ideas.
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Finally, a more prospective research direction is to investigate generalisations to non-linear control
systems. It is obvious that the methodology will have to be thoroughly modified, since our approach
fundamentally rests on the linearity of LT .

Outline of the article. In Section 2, we introduce the criterion J and specify the separation argu-
ment, which allows us to recast the non-reachability property. Section 3 focuses on numerical methods
for calculating J , using several possible discrete versions. Their relevance is discussed based on the
available information about A and its matrix exponential, and in each case, we provide fully explicit
error bounds. Finally, the Section 4 is entirely devoted to numerical experiments. After specifying the
methodology leading to computer-assisted proofs of non-reachability, we apply it to three examples,
with variable dimensions and constraint sets. We present concrete statements, each rigorously proven
using our computer-assisted methodology.

2 Non-reachability by separation

2.1 Main result

Consider the linear autonomous control system{
ẏ(t) = Ay(t) +Bu(t), t ∈ [0, T ],

y(0) = y0,
(S)

where y0 ∈ Rn and A ∈ Rn×n, B ∈ Rn×m, with u ∈ E := L2(0, T ;Rm). Recall that we make the
following assumption regarding the constraint set U and the unsafe set Yf :

U is compact, Yf is closed and convex. (H)

The solution to (S) at the final time T is characterised by Duhamel’s formula and writes

y(T ) = eTAy0 + LTu, where LTu :=

∫ T

0
e(T−t)ABu(t) dt.

Letting L(H1, H2) denote the set of linear continuous operators between two Hilbert spaces H1 and
H2, it is standard that LT defines an operator in L(E,Rn). Its adjoint, L∗

T ∈ L(Rn, E), is defined for
pf ∈ Rn by L∗

T pf (t) = B∗p(t), where p solves the backward adjoint equation.{
ṗ(t) +A∗p(t) = 0, t ∈ [0, T ]

p(T ) = pf ,
(3)

As already mentioned, the key aspect of our approach hinges on the assertion (1), where J denotes the
so-called dual functional, defined by

∀pf ∈ Rn, J(pf ) :=

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf

(−pf ) + ⟨y0, eTA∗
pf ⟩. (4)

Remark 1. When U is convex, the functional J can be understood as a dual functional associated to
a primal problem, in the sense of Fenchel-Rockafellar. More details are provided in Appendix A. This
interpretation leads us to consider useful algorithms that perform a descent over J in order to find dual
certificates, as explained in Section 4.

The following result describes the crucial argument underpinning our method, which is illustrated
by Figure 1.
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Proposition 2. Assume that (H) holds. Then, there exists pf ∈ Rn such that J(pf ) < 0 if and only if
Yf is not U-reachable from y0 in time T .

Proof. Let EU := {u ∈ E, u(t) ∈ U for a.e. t ∈ (0, T )}. With this notation in place, Yf is not
U-reachable from y0 in time T if and only if the set (Yf − eTAy0) ∩ LTEU is empty, where

Yf − eTAy0 = {y − eTAy0, y ∈ Yf}.

Using the basic relation σC−{y}(z) = σC(z)− ⟨y, z⟩, we have

σYf−eTAy0(−pf ) = σYf
(−pf ) + ⟨eTAy0, pf ⟩ = σYf

(−pf ) + ⟨y0, eTA∗
pf ⟩

As a result, the function J defined in (4) rewrites

J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf−eTAy0(−pf ) = σEU (L

∗
T pf ) + σYf−eTAy0(−pf ),

where the interchange of integration and supremum is justified, see e.g. [34, Theorem 14.60].
Now assume that we have found pf such that J(pf ) < 0. Then

σEU (L
∗
T pf ) = sup

u∈EU

⟨u, L∗
T pf ⟩ = sup

u∈EU

⟨LTu, pf ⟩ < −σYf−eTAy0(−pf ) = inf
yf∈Yf

⟨yf − eTAy0, pf ⟩,

showing that one cannot find u ∈ EU and yf ∈ Yf such that LTu = yf − eTAy0 and hence that Yf is
not U-reachable from y0 in time T > 0.

Conversely, suppose that Yf is not U-reachable from y0 in time T . Then, since U is compact, it
follows from a Lyapunov argument that the set of reachable states (from 0 in time T ), i.e., the set
LTEU , is compact and convex (see e.g. [21, Theorem 1A, Theorem 3 and Lemma 4A in Section 2.2]).
The set Yf − eTAy0 is closed and convex.

By assumption, these two sets do not intersect, hence we may strictly separate them: there exists
pf ∈ Rn \ {0} such that

σEU (L
∗
T pf ) = sup

w∈LTEU

⟨w, pf ⟩ < inf
yf∈Yf

⟨yf − eTAy0, pf ⟩ = −σYf−eTAy0(−pf )

which amounts to J(pf ) < 0.

Figure 1: Reachable set eTAy0 + LTEU , hyperplane associated to the dual certificate pf , and corre-
sponding scalar J(pf ) given by (6), for a singleton Yf = {yf}.

Remark 3. By positive 1-homogeneity of support functions, J is also positively 1-homogeneous, mean-
ing that J(λpf ) = λJ(pf ) for all λ ≥ 0, pf ∈ Rn. In particular, if there exists pf such that J(pf ) < 0,
then infpf∈Rn J(pf ) = −∞.
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Remark 4. We could also consider proving that Yf is not U-reachable from a full set of initial states
Y0 ⊂ Rn in time T , in which case, defining

∀pf ∈ Rn, J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf

(−pf ) + σY0(e
TA∗

pf )

=

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf−eTAY0

(−pf ),

the result of Proposition 2 holds as is under the assumption that the set Yf−eTAY0 is closed and convex:
this is the case for instance if Yf is closed and convex, and Y0 convex and compact.

Remark 5. The above proposition gives a necessary and sufficient condition for non-reachability. It is
worth pointing out that, without any assumptions on the sets U , Y0, Yf , the above criterion remains
a sufficient condition for non-reachability, as it yields a strict separating hyperplane between Yf and
eTAY0 + LTEU . In that case however, situations where these sets are disjoint but not separable by a
hyperplane (typically if Yf is not convex) are then undetectable by our approach.

Remark 6. As mentioned in the introduction, the above can be linked (at least formally) to the
Hamilton-Jacobi characterisation of some reachable sets [9, 27]. Indeed, formally, in optimal control
problems, the value function is solution to a Hamilton Jacobi type equation. Now, for our control
problem, the value function writes

S(yf ) :=

{
0 if yf is reachable,
+∞ otherwise,

so we see that the non-reachable set is characterised as the strict zero superlevel set {y, S(y) > 0}
of S. Note that S is a very singular function, and its numerical computation is not tractable, whereas
a geometrical approach using support functions leads to a convex function on which a descent algorithm
is then implemented, which is much more amenable and prone to numerical certification.

2.2 Unsafe sets and minimal times

As previously mentioned, we assume throughout that we know an explicit formula for both functions
σU and σYf

, which will be the case in the range of examples we will provide. For instance, for U defined
by the most standard box constraints ℓi ≤ ui ≤ Li for i ∈ {1, . . . ,m}, one has with ℓ = (ℓi), L = (Li)
the explicit formula

∀u ∈ Rm, σU (u) = ⟨L, u+⟩+ ⟨ℓ, u−⟩, (5)

where u+ = max(u, 0) and u− = min(u, 0) refer to the (componentwise) positive and negative parts of
u respectively, and multiplications are to be understood componentwise.

Let us now discuss expressions for the functional (4) for some specific, yet natural, choices of sets Yf .

Chosen unsafe sets Yf . Most of our examples in this article will be based on, but not limited to, the
singleton case Yf = {yf}. Below, we compute the corresponding functional and explain how one then
infers results for a closed ball around yf , i.e., Yf = B(yf , ε), and even a full half-space associated with
yf . Section 4.3 features a more involved (unbounded) example where Yf is a cylinder in R4, pertaining
to the Space rendezvous problem.

Singleton. In the case Yf = {yf}, one computes σYf
(−pf ) = −⟨yf , pf ⟩, which leads to the functional

J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt− ⟨yf , pf ⟩+ ⟨y0, eTA∗

pf ⟩. (6)
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Ball. In the case of a ball Yf = B(yf , ε) (which recovers the above case with ε = 0), we find

σYf
(−pf ) = −⟨yf , pf ⟩+ ε∥pf∥,

hence we uncover the same functional up to the additional term ε∥pf∥.
In practice, this has the following implication: given yf , assume that we have found pf such that

J(pf ) < 0 with J given by (6). Then B(yf , ε) is not U-reachable from y0 in time T > 0 for any
ε < −J(

pf
∥pf∥). Hence, once a target yf is fixed, we will only be concerned with the functional J given

by (6). If pf is found such that J(pf ) < 0, we thus obtain a full ball around yf that is not U-reachable
from y0 in time T > 0.

Half-space. We now show how an unreachable half-space can be constructed from any target yf . For
the sake of this remark, when considering the associated functional (6), we highlight the dependence
of J on the target yf , by writing J(pf ; yf ) instead of just J(pf ).

Now, assume that α := J(pf ; yf ) has been computed for a given pf ∈ Rn. For any ỹf ∈ Rn, we
have the relation

J(pf ; ỹf ) = J(pf ; yf ) + ⟨yf − ỹf , pf ⟩.

Hence, Proposition 1 shows that, independently of the sign of α, any vector in the half-space

{ỹf ∈ Rn, ⟨ỹf − yf , pf ⟩ > α} ,

is not U-reachable from y0 in time T . In other words, calculating J(pf ; yf ) for any pf immediately
provides a full half-space that is not U-reachable from y0 in time T .

Minimal times. It is interesting to notice that, still in the case where Yf = {yf} and assuming we
have either y0 = 0 or yf = 0, we can also derive a lower bound on the minimal reachability time.
We will exploit this result in obtaining (lower) estimates for minimal times in the case of two control
systems in Section 4.

Proposition 7. Assume that U ∩Ker(B) ̸= ∅, and suppose either y0 = 0 or yf = 0.
If yf is not U-reachable from y0 in time T , then it is not reachable for any T̃ ≤ T either. Conse-

quently, denoting

T ⋆(y0, yf ,U) = inf
{
T > 0, yf is U-reachable from y0 in time T

}
∈ [0 +∞],

we have T ⋆(y0, yf ,U) ≥ T .

Proof. This proposition is standard and its proof is elementary. Let us provide the main argument in
the case where y0 = 0 for the sake of completeness. Assume that yf is U-reachable from 0 in time T̃ by
a control ũ. Let T > T̃ . Let v ∈ U ∩KerB. Then, the control u defined by u(t) = v for t ∈ (0, T − T̃ )
and u(t) = ũ(t − T + T̃ ) steers the system from 0 to yf in time T and satisfies the constraint, hence
the conclusion. The end of the proof is straightforward.

Remark 8. In the context of proving that a given unsafe set Yf is not reachable for all times t ∈ [0, T ],
let us note the following equivalence: Yf is not U-reachable from y0 in all times t ∈ [0, T ] if and only if
for all t ∈ [0, T ], Yf − etAy0 is not U-reachable from 0 in time t. This leads to a sufficient condition:
if Yf − ∪t∈[0,T ]{etAy0} is not U-reachable from 0 in time T , then Yf is not U-reachable from y0 in all
times t ∈ [0, T ].
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3 Discretisation and error estimates

This section presents several discretisations and corresponding error estimates for the dual func-
tional (4). Error estimates are given using standard Hermitian norms (over Cn and Cm), always
denoted by ∥ · ∥. The same notation ∥ · ∥ will also be used for the corresponding operator norms, that
of matrices in Cn×n, Cm×n and Cn×m.

As discussed in the introduction, we make the reasonable assumption that we have access to an
explicit formula for σU (and σYf

). Also recall that U is compact, and M denotes a positive constant
such that ∥v∥ ≤ M for all v ∈ U . In particular, it is easily seen that

∀x, y ∈ Rm, σU (x) ≤ σU (x− y) + σU (y) ≤ M∥x− y∥+ σU (y),

which implies that σU is M -Lipschitz.

3.1 Partial discretisation for a known adjoint exponential

To evaluate the dual functional (4) at a given point pf , one must compute a time integral, and solve the
backward equation (3). Given that σU will generally not be better behaved than Lipschitz, we will stick
to time-discretisation schemes that are of order 1, whether for computing integrals or for integrating
ODEs.

Even when one has access to an explicit solution for the backward equation (3), the integral will
seldom be computable (or at the cost of cumbersome computations). This is why we first consider the
case of discretising the integral but not the backward equation (3).

We define
Nt ∈ N∗, ∆t =

T

Nt
, tk = k∆t for k ∈ {0, . . . , Nt}.

For a fixed pf ∈ Rn, we let t 7→ p(t) be the solution to (3), i.e., p(t) = e(T−t)A∗
pf , and consider Jd,1,

the first discretised version of J given by

Jd,1(pf ) := ∆t

Nt∑
k=1

σU (B
∗p(tk)) + σYf

(−pf ) + ⟨y0, p(0)⟩. (7)

Proposition 9. For a given pf ∈ Rn, it holds that

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥

(
sup

t∈[0,T ]
∥etA∗∥

)
∥A∗pf∥.

Proof. Recall that σU is M -Lipschitz continuous; therefore, we have for all s, t ∈ [0, T ]∣∣σU(L∗
T pf (s)

)
− σU

(
L∗
T pf (t)

)∣∣ ≤ M∥B∗p(s)−B∗p(t)∥ ≤ M∥B∥∥p(t)− p(s)∥.

We can now establish the bound∣∣σU(L∗
T pf (s)

)
− σU

(
L∗
T pf (t)

)∣∣ ≤ M∥B∥ sup
t∈[0,T ]

∥A∗p(t)∥ |t− s|.

We have proved that t 7→ σU
(
L∗
T pf (t)

)
is Lipschitz continuous. Recalling the standard estimate∣∣∣∣∣

∫ T

0
f(t) dt−∆t

Nt∑
k=1

f(tk)

∣∣∣∣∣ ≤ 1

2
KT ∆t

for a K-Lipschitz function f : [0, T ] → R, we end up with∣∣∣∣∣
∫ T

0
σU (B

∗p(t)) dt−∆t

Nt∑
k=1

σU (B
∗p(tk))

∣∣∣∣∣ ≤ 1

2
∆tMT∥B∥ sup

t∈[0,T ]
∥A∗p(t)∥,

9



thus, the previously announced estimate readily follows, using the definition of p(t):

sup
t∈[0,T ]

∥A∗p(t)∥ = sup
t∈[0,T ]

∥A∗e(T−t)A∗
pf∥ = sup

t∈[0,T ]
∥A∗etA

∗
pf∥

= sup
t∈[0,T ]

∥etA∗
A∗pf∥ ≤ sup

t∈[0,T ]
∥etA∗∥∥A∗pf∥.

Jordan-Chevalley decomposition. Even if one knows the matrix exponentials t 7→ etA
∗ (or

equivalently the matrix exponentials t 7→ etA), it is still necessary to provide an upper bound for
supt∈[0,T ] ∥ etA

∗∥ = supt∈[0,T ] ∥etA∥ to make the bound in Proposition 9 useful.
Assume that we have access to the Jordan-Chevalley decomposition of A in the following sense: we

have A = D + N where D is diagonalisable, N is nilpotent with index ℓ, the two matrices D and N
commute. Then, of course, etA is obtained by

∀t ∈ R, etA = etD
ℓ−1∑
k=0

Nk

k!
tk = etDQℓ(tN), (8)

where Qℓ is the polynomial x 7→
∑ℓ−1

k=0
xk

k! . Assume further that we have access to the transition matrix
P that diagonalises D, i.e., diag(Λ) = P−1DP where Λ = (λ1, . . . , λn) ∈ Cn stores the eigenvalues
of A.

Consequently, we have
etA = PetΛP−1Qℓ(tN),

which leads to the estimate
sup

t∈[0,T ]
∥etA∥ ≤ κ(P )eµTQℓ(∥N∥T ),

where µ := max({Re(λi), i ∈ {0, . . . , n}) is the spectral abscissa of A, and κ(P ) = ∥P∥∥P−1∥ stands
for the condition number of the transition matrix P .

From these estimates, we derive the error formula below, in the case where the Jordan-Chevalley
decomposition is known.

Corollary 10. Let us assume that we know the explicit Jordan-Chevalley decomposition of A, in the
form A = D +N . Then for a given pf ∈ Rn, there holds

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥κ(P )eµTQℓ(∥N∥T ).

3.2 Full discretisation

We now address the scenario where the adjoint exponential t 7→ etA
∗ is unknown, necessitating the

discretisation of the backward equation (3) as well. Assume that a discretisation scheme has been
applied that produces pk ∈ Rn for k ∈ {0, . . . , Nt}.

In the next subsection, we will specialise to the Euler implicit scheme for the class of negative
semi-definite matrices.

The fully discretised version of J then reads

Jd,2(pf ) := ∆t

Nt∑
k=1

σU (B
∗pk) + σYf

(−pf ) + ⟨y0, p0⟩. (9)
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Proposition 11. For a given pf ∈ Rn and vectors pk ∈ Rn, k ∈ {0, . . . , Nt}, there holds

|J(pf )− Jd,2(pf )| ≤ ∆t M∥B∥

(
1

2
T∥A∗pf∥ sup

t∈[0,T ]
∥etA∗∥+

Nt∑
k=1

∥p(tk)− pk∥

)
+ ∥y0∥∥p(0)− p0∥.

The proof is straightforward and left to the reader, as it primarily involves providing an estimate
for |Jd,1(pf )− Jd,2(pf )| and combining it with the estimate given from Proposition 9.

We now explore the application of the simplest possible scheme, that is the Euler explicit scheme:{
pNt = pf

pk = (Id + ∆tA∗)pk+1 ∀k ∈ {0, . . . , Nt − 1}.
(10)

Note that the Euler implicit scheme could also be employed and would yield similar results. It is
then standard (see e.g. [32, Section 11.3.2]) that

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t (T − tk)

(
sup

t∈[tk,T ]
∥p′′(t)∥

)
e∥A∥T .

Given that p′′(t) = e(T−t)A∗
(A∗)2pf , this leads to the estimate

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t (T − tk)

(
sup

t∈[tk,T ]
∥etA∗∥

)
e∥A∥T ∥(A∗)2pf∥

≤ 1

2
∆t (T − tk)e

2∥A∥T ∥(A∗)2pf∥

We acknowledge that constants appearing in the above might slightly be improved. All in all, we thus
find following the global estimate.

Proposition 12. For a given pf ∈ Rn and vectors pk ∈ Rn, k ∈ {0, . . . , Nt} defined according to the
Euler explicit scheme (10), it holds that

|J(pf )− Jd,2(pf )| ≤
1

2
∆t T

[
M∥B∥

(
e∥A∥T ∥A∗pf∥+

1

2
Te2∥A∥T ∥(A∗)2pf∥

)
+ ∥y0∥e2∥A∥T ∥(A∗)2pf∥

]
.

Proof. The only step that requires detailed explanation is the estimation of the sum of the errors
∥p(tk)− pk∥, obtained by writing

Nt∑
k=1

∥p(tk)− pk∥ ≤ 1

2
∆t e2∥A∥T ∥(A∗)2pf∥

Nt∑
k=1

(T − tk) =
1

2
∆t e2∥A∥T ∥(A∗)2pf∥

T

Nt

Nt∑
k=1

(Nt − k).

The sum
∑Nt

k=1(Nt − k) equals (Nt−1)Nt

2 ; therefore

Nt∑
k=1

∥p(tk)− pk∥ =
1

4
∆t e2∥A∥T ∥(A∗)2pf∥T (Nt − 1) ≤ 1

4
T 2e2∥A∥T ∥(A∗)2pf∥.

This estimate has one major drawback: it diverges exponentially fast as a function of T , making
the investigation of non-U-reachability challenging, even for moderate times T > 0, especially if the
matrix norm ∥A∥ is large.
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3.3 Full discretisation for a symmetric negative semidefinite matrix

The purpose of this subsection is to exhibit a class of matrices, that of symmetric negative semidefinite
matrices, for which refined estimates can be derived without the errors exponentially diverging errors
as a function of time T .

Even though such matrices are diagonalisable, computing their exponential can become intractable
for large sizes, so that one needs to resort to discretisation for the backward equation (3). The implicit
Euler scheme below is well suited to that situation:{

pNt = pf

(Id−∆tA∗)pk = pk+1 ∀k ∈ {0, . . . , Nt − 1}.
(11)

It always makes sense provided ∆t is small enough, and in the case where the matrix A is a negative
semidefinite symmetric matrix, the Euler implicit scheme is well-defined whatever the value of ∆t > 0.

Assume we are given a symmetric positive semidefinite matrix C, diagonalised in the form C =
PDP−1, with D diagonal and P a orthogonal transition matrix, we may define φ(C) for any function
φ : [0,+∞) → R by φ(C) = Pφ(D)P−1 with componentwise application of φ on the diagonal. This
definition obviously agrees with the usual matrix exponential and rational fractions whose poles avoid
[0,+∞).1 Using that κ(P ) = 1, one has for all such functions

∥φ(C)∥ = ∥φ(D)∥ ≤ sup
x≥0

|φ(x)|, (12)

Proposition 13. Assume that A is a negative semidefinite symmetric matrix, and let pf ∈ Rn. Then
the error between the solution to the backward ODE (3) and its implicit Euler discretisation (11) satisfies

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t ∥A∗pf∥. (13)

Proof. By definition, for all k ∈ {0, . . . , Nt}, we have

p(tk)− pk =
[
e(T−tk)A

∗ − (Id−∆tA∗)−(Nt−k)
]
pf .

Hence me may write
p(tk)− pk = −∆t φNt−k(−∆tA∗)A∗pf ,

where for k ∈ N∗, the function φk is defined for x > 0 by

φk(x) :=
e−kx − (1 + x)−k

x
,

extended by continuity at x = 0 by φk(0) := 0.
Estimating, we find

∥p(tk)− pk∥ ≤ ∆t ∥φNt−k(−∆tA∗)∥ ∥A∗pf∥ ≤ ∆t sup
x≥0

|φNt−k(x)|∥A∗pf∥

Let us conclude by proving that supx≥0 |φk(x)| ≤ 1
2 for all k ≥ 1. First, a routine study shows that

the function x 7→ e−x(1 + x)− 1 + 1
2x

2 is nonnegative for all x ≥ 0, so that

|φ1(x)| =
1

x

[
1

1 + x
− e−x

]
≤ 1

2
x, (14)

1There are of course much more general definitions for functions of matrices [14], but in the present setting this
definition will suffice.
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which combined with the basic estimate |φ1(x)| ≤ 1
x

1
1+x for x > 0 yields |φ1(x)| ≤ 1

2 by considering
the two cases x ≤ 1 and x > 1. Now for k ≥ 2, and x > 0, we write

|φk(x)| =
1

x

[
1

1 + x

] k−1∑
j=0

e−jx
( 1

1 + x

)k−j−1
= |φ1(x)|

k−1∑
j=0

e−jx
( 1

1 + x

)k−j−1
≤ |φ1(x)|

k

(1 + x)k−1
.

thanks to the bound e−x ≤ 1
1+x . Let us focus on the case k = 2. If x ≤ 1, we have |φ2(x)| ≤ 1

2x
2

1+x ≤ 1
2 ,

and for x > 1, |φ2(x)| ≤ 1
x(1+x)

2
1+x ≤ 1

2 , hence the result for k = 2.
Now for any k ≥ 3, using the estimate (14), we obtain the inequality

|φk(x)| ≤
kx

2(1 + x)k−1

The right-hand side is maximised at x = 1
k−2 , hence

|φk(x)| ≤
k

2(k − 2)

(k − 2

k − 1

)k−1
=

1

2

k(k − 2)

(k − 1)2

(k − 2

k − 1

)k−3
≤ 1

2
.

This entails the following compact estimate for the dual functional.

Proposition 14. Assume that A is a symmetric negative semidefinite matrix. For a given pf ∈ Rn

and vectors pk ∈ Rn, k ∈ {0, . . . , Nt} defined according to the Euler implicit scheme (11), there holds

|J(pf )− Jd,2(pf )| ≤ ∆t ∥A∗pf∥
(
TM∥B∥+ 1

2
∥y0∥

)
. (15)

Proof. We simply build upon the general estimate of Proposition 11. First, since −A∗ is a symmetric
positive semidefinite matrix, (12) provides

∥etA∗∥ ≤ sup
x≥0

|e−tx| = 1

for all t ≥ 0, and the previous estimate from Proposition 13 for the Euler implicit scheme shows that

Nt∑
k=1

∥p(tk)− pk∥ ≤ 1

2
∆t∥A∗pf∥Nt =

1

2
T∥A∗pf∥.

Remark 15. We note that similar estimates, not exponentially diverging with T , could also be derived
for the broader class of dissipative matrices (i.e., matrices A satisfying ⟨Ax, x⟩ ≤ 0 for all x ∈ Rn).

4 Numerical approach and examples

In this section, we will illustrate the potential of the approach described in the previous section to study
the (non)-reachability of certain targets, in a variety of examples. We present three main example
families, respectively related to:

• the control of a streetcar that we wish to control in order to reach a final state in minimal time.
This is a well-known toy problem in optimal control theory. We use it to validate our results since
the reachable set and minimal times

(
from (0, 0)T

)
have known explicit formulae;
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• the spatial rendezvous problem. We aim at reaching (or avoiding) a given target, corresponding
to a space station, for instance the ISS, in a referential centered in the initial position of the
spacecraft. We use a dynamic space mechanics model and provide certified lower-bounds on the
minimal time needed to reach the target. We then develop a method to prove that a motionless
obstacle – e.g. an asteroid – cannot be collided within a predetermined time interval.

• a more academic setting, based on randomly generated negative semi-definite (Jacobi) matrices A
(of possibly large dimension). This is designed to investigate cases where computing exponentials
becomes out of reach, as well as to explore the effect increasing dimension has on our technique.

Most cases feature a set of the form Yf = {yf}, hence the function of interest is (6). As explained
in Subsection 2, the use of the corresponding functional also allows us to certify that balls around yf
or even half-spaces cannot be reached. The types of constraint sets U also vary across examples.

4.1 Numerical approach and methodology

In order to numerically verify the non-U-reachability of a given target yf from y0 in time T , one must
proceed through the following three steps:

1. First, one must compute a discretisation Jd of the functional J , for example Jd,1 or Jd,2, with the
associated bounds on discretisation errors

2. Then, one must minimise said discretisation in order to find an element pf such that Jd(pf ) < 0.

3. Finally, one must compute e(pf ) such that Jd(pf ) − e(pf ) ≤ J(pf ) ≤ Jd(pf ) + e(pf ). This is
done here using the INTLAB toolbox [35], which, using interval arithmetic, takes into account
the rounding errors and added discretisation errors. This leads to the verification that indeed,
J(pf ) ≤ Jd(pf )+ e(pf ) < 0. If that is not the case, either yf is reachable, or a finer discretisation
or minimisation is required to prove its non-reachability.

Since INTLAB allows for most of usual computation techniques, the second and third steps could
be joined. However, interval arithmetic is computationally expensive, hence we first minimise the
discretised functional Jd to find p such that Jd(pf ) < −η, where η is the typical size of errors e(pf ) (on
the ball ∥pf∥ = 1), and then verify that pf is indeed a certificate of non-U-reachability for yf . Since this
stopping condition will never be satisfied if the target set Yf is in fact U-reachable, one might consider
adding another condition based on how small an improvement is made from one step to another. As
the functional Jd does not admit a minimiser (see Remark 3) in the non-reachable case, we use the
stopping condition ∥∥∥∥ pk+1

∥pk+1∥
− pk

∥pk∥

∥∥∥∥ ≤ δ, (16)

where δ is a small tolerance.
Carrying out a descent algorithm on Jd can be tackled by means of many optimisation techniques.

For the following examples, we take advantage of the dual nature (see Appendix A) of the problem
with the choice of functions (23), assuming U is convex. This allows us to use the Chambolle-Pock
primal-dual algorithm [7]. It has the drawback of requiring a closed-form expression of two proximal
operators associated with the functionals F ∗ and G, as defined in Appendix A. In general, if σU and σYf

have closed-form formulae, so do those proximal operators.

4.2 The streetcar

Control problem. The following example is completely standard in optimal control theory. It can
be found for example in [21, Chapter 1] and is concerned with the optimal control of the acceleration
of a streetcar on a straight axis.
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We will use this example to both illustrate and to validate our approach, since the reachable set
and minimal times are known explicitly, see Appendix B.

We consider a streetcar moving on a graduated rectilinear axis. The initial position-velocity pair
of the streetcar is assumed to be (0, 0)T and the objective is to steer the system to some yf ∈ R2 in
minimal time. The control system reads {

ẏ1(t) = y2(t),

ẏ2(t) = u(t),
(17)

which corresponds to the matrices

A :=

(
0 1
0 0

)
, B :=

(
0
1

)
. (18)

For a fixed M > 0, the chosen constraint is given by

U := {u ∈ R, |u| ≤ M}.

Resolution method. First, we compute the support function

∀u ∈ R, σU (u) = M |u|,

which is a particular case of (5).
Here, we use the functional Jd,1 and the estimate given by Corollary 10. Given how simple σU and

the control system are, we acknowledge that one could actually compute the functional J itself and
only have to deal with round-off errors. We do not pursue this approach since we aim at analysing how
prominent the discretisation errors may be.

The Jordan-Chevalley decomposition of A is straightforward in this case, since the matrix A is itself
nilpotent, of index ℓ = 2. In this case, we hence have µ = 0, κ(P ) = 1, ℓ = 2, Q2(x) = 1 + x, leading
to the estimate

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥Q2(∥A∥T ).

Results. To highlight the dependence of J with respect to the target yf , we will temporarily rename
J(pf ) to J(pf ; yf ). We give examples of targets yf ∈ R2 that are certified to not be U-reachable below,
in the form of a computer-assisted theorem.

Theorem 16. The following targets are not U-reachable from (0, 0) in time T = 1, with M = 1

y1 = (0.1, 0.6)T , y2 = (0.5, 1.1)T , y3 = (0.3, 0)T .

Indeed, the dual certificates

p1 = (−0.77, 0.64)T , p2 = (0.29, 0.96)T , p3 = (0.85,−0.53)T .

provide the intervals

J(p1; y1) ∈ [−0.0305,−0.0291] J(p2; y2) ∈ [−0.0964,−0.0959], J(p3; y3) ∈ [−0.0282,−0.0268].

The targets and dual certificates are plotted in Figure 2, along with the theoretically known reach-
able set.

Using the formula provided in Appendix B, the minimal times to reach y1, y2 and y3 are computed
to be slightly above 1.1656, 1.7480 and 1.0954, which means they are indeed not reachable.
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Figure 2: Non-U-reachability of the targets from Theorem 16, together with the support hyperplane
associated to their respective dual certificates, and the streetcar theoretical reachable set deduced from
Appendix B.

4.3 Space rendezvous

Control problem. We here consider the 2-dimensional linearised Hill-Clohessy-Wiltshire equations,
as defined in [8]. These equations model the motion of a follower spacecraft in the neighbourhood of a
reference spacecraft

(
at position y0 = (0, 0, 0, 0)T

)
. The matrices underlying the control problem are

A :=


0 0 1 0
0 0 0 1
3 0 0 2
0 0 −2 0

 , B :=


0 0
0 0
1 0
0 1

 . (19)

Note that y1, y2 are positions and y3 = ẏ1, y4 = ẏ3 are the corresponding speeds.
We consider the following constraint set for fixed M2 > 0, M∞ > 0:

U := {u ∈ R2, ∥u∥2 ≤ M2, ∥u∥∞ ≤ M∞}, (20)

hence we may take M := min(M2,
√
2M∞).

Let us compute the support function σU in the case where M∞ ≤ M2 ≤
√
2M∞, that we will

consider hereafter. As illustrated in Figure 3, the constraint set is the intersection of a disk and a
square. Observe that the boundary of U is the union of flat and circular parts, whose coordinates (x, y)
of intersection points form the set

P =

{(
±M∞,±

√
M2

2 −M2
∞

)}⋃{(
±
√
M2

2 −M2
∞,±M∞

)}
.

Let us write ∂U = F ∪ C, where F (resp. C) denotes the union of all flat (resp. circular) parts of the
boundary.

Let us fix x ∈ R2. We distinguish between two cases:

• if (O;x) ∩ ∂U ⊂ C, meaning that ∥x∥∞
M∞

≤ ∥x∥2
M2

, then M2
x

∥x∥2 ∈ U and using the Cauchy-Schwarz
inequality, we get

σU (x) ≤ sup
y∈U

∥x∥2∥y∥2 =
〈
x,M2

x

∥x∥2

〉
= M2∥x∥2.

We thus infer that σU (x) = M2∥x∥2.
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• Otherwise, σU (x) reads as the maximum of a linear (convex) function on a union of flat parts.
We easily infer that σU (x) = ⟨px, x⟩, where px denotes any point of the set argminp∈P ∥p− x∥2.

Figure 3: Construction of the support function for the rendezvous problem. One has in particular
σU (xi) = ⟨xi, x̄i⟩, i = 1, 2.

Resolution method. The Jordan-Chevalley decomposition of A is given by A = D +N with

D := P


0 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 i

P−1, N := P


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

P−1, P :=


0 −2

3 −1 −1
1 0 2i −2i
0 0 i −i
0 1 2 2

 .

Here, we also use the functional Jd,1 and the estimate given by Corollary 10. Using the corresponding
notations, we have µ = 0, and the index of the nilpotent matrix N is ℓ = 2. Thus the corresponding
estimate reads

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥κ(P )Q2(∥N∥T ),

with Q2(x) = 1 + x.

Results. Given a target yf ∈ R4, we can derive a lower-bound on the minimal time needed to steer
the system from y0 = (0, 0, 0, 0)T to yf . Proposition 7 ensures that we may indeed estimate the
corresponding minimal time from below, using our approach. To compute this lower bound, we apply a
bisection algorithm over the set of positive real numbers, starting from a predefined interval [tinf, tsup],
and expanding it by multiplying its length by 2 until we cannot prove the non-reachability in time
tsup, and we can prove it in time tinf. Then, the standard bisection method applies until the interval is
reduced to the desired length.

First, we consider the time-minimal control problem of steering the system from y0 = (0, 0, 0, 0)T

to some other position at 0 speed, i.e., yf = (y1, y2, 0, 0)
T for various values of (y1, y2) ∈ R2. Since the

control problem is linear and the constraints centrally symmetric (i.e., U = −U), if yf is reachable in
time T > 0, so is −yf . This translates into the identity J(pf ; yf ) = J(−pf ;−yf ), allowing us to focus
our computations on the right half-plane.
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Figure 4: Estimates of the minimal time for reachability of various targets at speed 0 for the spacecraft
rendezvous control problem. Certified lower bounds (left panel (a)) versus minimal times outputted by
Gekko Optimization Suite [4] (right panel (b)).

Using the bounds M2 = 1.15 and M∞ = 1, we obtain the certified lower bounds on the minimal-
time shown on Figure 4(a). For conciseness, we do not provide the corresponding dual certificates. For
comparison purposes, the minimal times computed using the Python package Gekko [4] are presented
in Figure 4(b). Note that Gekko does not control discretisation bounds nor roundoff errors, hence the
corresponding estimates are by no means certified.

Computation times. As is common, our certified method comes at the price of increased computation
times: each step of the bisection algorithm is rather fast (about 30 seconds on a standard desktop
computer), but depending on parameters and how good the initial guess is, the number of iterations
of the bisection algorithm may go from 3-4 to 10-15 iterations, whereas Gekko’s method computes one
approximation of the minimal time in about 10 seconds.

Assuming that Gekko produces reliable estimates, the accuracy of our method seems to decrease
the further the target yf is from y0, going from about 1.8% to 37%. This can be explained as follows:
our computations were made with a fixed number of time steps, namely Nt = 20, 000; hence the higher
the theoretical minimal time is, the harder it is to establish a tight lower-bound. Increasing Nt allows
for a more precise approximation: for example, for yf = (0.5, 0.5, 0, 0)T , with Nt = 400, 000, the dual
certificate pf = (0.874, 0.0914,−0.3008, 0.3704)T proves the bound tmin ≥ 3.4, which is about 3.7%
away from Gekko’s approximation.

On the other hand, Gekko seems to produce what might be artefacts (points (0.1,−0.4)T and
(0.2,−0.5)T ), while our computed certified lower bounds remain smooth.

More complex unsafe set Yf . Now we look at the case where ones wants to avoid a given spherical
object in space, motionless in the considered referential, regardless of the speed. In other words, for a
fixed choice of (z1, z2) ∈ R2, and ε > 0, we consider

Yf =
{
(y1, y2, y3, y4) ∈ R4, ∥(y1 − z1, y2 − z2)∥R2 ≤ ε

}
, (21)

In that case Yf is unbounded; letting z := (z1, z2, 0, 0), the support function of Yf can be computed to
be

σYf
: x 7−→ ⟨z, x⟩+ ε∥x∥2 + δ{y∈R4, y3=y4=0}(x),

where we use the convex analytic notation δC(x) = 0 if x ∈ C and +∞ instead. We prove below a
certified result for one such example.

Theorem 17. Take z1 = z2 = 0.5, ε = 0.1, M2 = 1.15, M∞ = 1 and T = 1. Then Yf is not
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U-reachable from (0, 0, 0, 0)T in time T . Indeed, we find

J(pf ) ∈ [−0.1146,−0.0717], with pf = (0.62, 0.78, 0, 0)T .

Moreover, since y0 = (0, 0, 0, 0)T , for any t ∈ [0, T ], Yf is not U-reachable from (0, 0, 0, 0)T in time t.

4.4 Negative semi-definite Jacobi matrices

Control problem. In this section, we report on results for some randomly generated Jacobi matrices,
with varying state dimensions n. That is, we consider matrices of the form

A =



a1 c1 0 . . . 0

c1 a2 c2
. . .

...

0 c2 a3
. . . 0

...
. . . . . . . . . cn−1

0 . . . 0 cn−1 an


. (22)

with a = (a1, . . . , an) ∈ Rn, c = (c1, . . . , cn−1) ∈ Rn−1.
These matrices are real symmetric, and up to our knowledge, no closed-form expressions are known

for their eigenvalues and eigenfunctions, except in the specific case where the ci’s are all equal. Hence,
for large values of n, diagonalising A becomes intractable. Even if it were accessible, it would be prone
to numerical errors and we are not aware of any software that does produce such a diagonalisation
within interval arithmetic.

We generate such a matrix in the following way: let K > 0 and L > 0. We draw the ci’s uniformly
in [−K,K]. Then, we draw the ai’s uniformly in (−2K − L,−2K]. Thanks to the Gershgorin circle
theorem, the resulting matrix is negative semi-definite.

We consider a single control u, thus m = 1. The corresponding matrix B ∈ Rn×1 is B = (1, . . . , 1)T .
For a fixed M > 0, the constraint set is given by

U = {u ∈ R, |u| ≤ M},

for which we have σU (u) = M |u|. The target yf is chosen randomly, with i.i.d entries uniformly
in [−1, 1], then normalised such that ∥yf∥ = 0.05.

Resolution method. Under the assumptions mentioned above, all eigenvalues of A are nonpositive
according to the Gershgorin circle theorem.

As a result, we are dealing with negative semi-definite matrices, enabling us to use estimates coming
from Proposition 14 upon using the Euler implicit scheme to approximate the matrix exponential.

Results. In the following example, we shall take M = 1, T = 1, Nt = 1,000 and y0 = 0.

Random targets. For each chosen dimension n, we generate 200 experiments with a target yf of fixed
norm ∥yf∥ = 0.05, and a random matrix A drawn as explained previously (with K = 2, L = 0.1).
More precisely, we run our descent algorithm to try and prove the non-U-reachability of yf from y0 in
time T . The following table shows the resulting means and standard deviations for the midpoint and
size of the obtained intervals around J(

pf
∥pf∥) where pf is the last iterate of the optimisation algorithm.

Recalling the notation EU = {u ∈ E, t ∈ (0, T ), u(t) ∈ U for a.e. t ∈ (0, T )}, it will be convenient
to report values for the two terms involved in the definition of J , namely

J
( pf
∥pf∥

)
= σEU

(
L∗
T

pf
∥pf∥

)
−
〈
yf ,

pf
∥pf∥

〉
.
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Indeed, once pf and yf are fixed, only the second term depends on the target yf . Assume that
⟨yf ,

pf
∥pf∥⟩ > 0 and J(

pf
∥pf∥) > 0 (so nothing is known about the U-reachability of yf ). Then one can

dilate yf , i.e. change yf to λyf with λ > 0, and obtain a value λ⋆ > 0 such that λyf is not U-reachable
from 0 in time T , for any λ > λ⋆.

We also display below the proportion of targets which are proved to be non-reachable.

n
〈
yf ,

pf

∥pf∥
〉 Midpoints of σEU

(
L∗
T

pf

∥pf∥
)

Radii of σEU

(
L∗
T

pf

∥pf∥
)

Proportion of

Mean Median Standard Mean Median Standard guaranteed
deviation deviation non-reachable targets

2 0.0316 0.0027 0.0019 0.0063 0.0083 0.0082 0.0023 0.845
5 0.0369 0.0057 0.0036 0.0053 0.0148 0.0147 0.0026 0.91
10 0.0426 0.0043 0.0032 0.0033 0.0210 0.0209 0.0030 0.965
20 0.0457 0.0040 0.0035 0.0021 0.0288 0.0291 0.0032 0.97
50 0.0483 0.0067 0.0065 0.0026 0.0462 0.0461 0.0034 0.145

As the dimension n grows, one should expect that the proportion of final states yf of norm ∥yf∥ =
0.05 that are non-U-reachable (from 0 in time T ) should approach 1, as we keep a single control (m = 1).
In fact, this is what is seen up until n = 20. Then, when is the dimension is increased to n = 50, this
proportion drops to about 15% if the tolerance δ defining the stopping criterion (16) is kept to its initial
value δ = 10−5. By diminishing δ to δ = 5.10−7, we partially mitigate this problem, guaranteeing the
non-U-reachability of about 52% of states yf . Obtaining even higher values becomes computationally
prohibitive, making the case of dimension n = 100 intractable.

If, however, we increase the norms of targets yf from 0.05 to 0.1, then a tolerance of δ = 10−5 is
enough to certify that almost all such targets are non-U-reachable, even in the case n = 100.

The main takeaway is that the tolerance δ should be adapted to the problem dimensions, and to
how close the target of interest is to the unknown reachable set. Another degree of liberty is to increase
the number of time steps Nt, which leads to a reduction of the error term at the expense of increased
computation time. Regardless, these results suggest that our approach suffers from a sort of curse of
dimensionality.

Size of the reachable set. We then try to estimate the size of the reachable set from y0 = 0, i.e., LTEU .
For a given dimension n, we randomly choose a fixed matrix A in the same way as before. Then, we
draw 1000 vectors p̃f at random on the unit sphere of Rn, and report the statistics obtained for (the
intervals) σLTEU (p̃f ) = σEU (L

∗
T p̃f ).

n
Midpoints of σEU (L

∗
T p̃f ) Radii of σEU (L

∗
T p̃f )

Mean Median Standard deviation Mean Median Standard deviation
2 0.3527 0.3874 0.1837 0.0087 0.0089 0.0014
5 0.3487 0.3112 0.2138 0.0138 0.0138 0.0022
10 0.3305 0.2783 0.2163 0.0204 0.0201 0.0027
20 0.2982 0.2523 0.2056 0.0292 0.0292 0.0032
50 0.3305 0.2839 0.2131 0.0467 0.0467 0.0037
100 0.3427 0.2983 0.2217 0.0651 0.0651 0.0032

As can be seen, although the midpoints of intervals are rather constant, the error term steadily
increases, which leads to more difficult proofs of non-reachability. As already mentioned, one could
increase Nt to reduce errors.
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A Convex analytic interpretation

Here, we make the additional assumption that the constraint set U is not only compact, but also convex.
For all the following definitions and results, we refer e.g. to [3].

We let H be a Hilbert space. We recall that a function f : H → R ∪ {+∞} is said to be proper if
it is not identically equal to +∞.

Definition-Proposition 18. We define

Γ0(H) := {f : H → R ∪ {+∞}, f convex, lower semi-continuous and proper} .

We denote by f∗ : H → R ∪ {+∞} the convex conjugate of f ∈ Γ0(H)

f∗ : y 7→ sup
x∈H

⟨x, y⟩ − f(x).

Furthermore, f∗ belongs to Γ0(H).

Definition 19. For C ⊂ H a nonempty closed convex subset, we denote by δC : H → R ∪ {+∞} the
convex indicator function of C

δC : x 7→

{
0 if x ∈ C

+∞ if x /∈ C.

We have δC ∈ Γ0(H).

By definition, note that δ∗C = σC .

Theorem 20 (Weak and strong duality). Let E,X be two Hilbert spaces, K ∈ L(E,X), F ∈ Γ0(E),
and G ∈ Γ0(X). Then we have the following so-called weak duality

inf
x∈E

F (x) +G(Kx) ≥ − inf
y∈X

F ∗(K∗y) +G∗(−y).

If in addition there exists pf ∈ X such that F ∗ is continuous at L∗
T pf , then strong duality holds,

i.e.,
inf
x∈E

F (x) +G(Kx) = − inf
y∈X

F ∗(K∗y) +G∗(−y).

Fenchel-Rockafellar interpretation of our approach. Since the compact constraint set U is
assumed to be convex, so is the set

EU = {u ∈ E, t ∈ (0, T ), u(t) ∈ U for a.e. t ∈ (0, T )}.

An alternative approach to the one leading to Proposition 2 is then to remark that Yf is U-reachable
from y0 in time T if and only if

∃u ∈ E, δEU (u) + δYf−eTAy0(LTu) = 0,

in other words if and only if
inf
u∈E

δEU (u) + δYf−eTAy0(LTu) = 0.

Note that the above functional takes at most two values, 0 and +∞. Denoting

F := δEU , G := δYf−eTAy0 , (23)

we have F ∈ Γ0(E), G ∈ Γ0(Rn) and we find that

F ∗(L∗
T pf ) +G∗(−pf ) = σEU (L

∗
T pf )− σYf−eTAy0(−pf ) = J(pf ).
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Furthermore, it is easily seen that F ∗ is continuous at 0 = L∗
T 0. Thus we can apply Theorem 20 to

obtain the strong duality

inf
u∈E

δEU (u) + δYf−eTAy0(LTu) = − inf
pf∈Rn

J(pf ).

In particular, we see that if there exists pf such that J(pf ) < 0, then infpf∈Rn J(pf ) < 0 (in which
case this infimum even equals −∞), hence the infimum on the left-hand side equals +∞, and Yf is not
U-reachable from y0 in time T . Conversely, if Yf is not U-reachable from y0 in time T , the left-hand
side equals +∞, which leads to infpf∈Rn J(pf ) = −∞, so that there exists pf ∈ Rn satisfying J(pf ) < 0.

B Minimal time for the streetcar example

Proposition 21. Let (xf , yf ) ∈ R2. The minimal time to steer System (17) from (0, 0) to (xf , yf )
reads

T =
−syf + 2

√
1
2y

2
f + sMxf

M
, with s = sign f(xf , yf ),

using the convention sign(0) = 0, where f : R2 → R is given by

f(x, y) = x− 1

2M
y2 sign(y).

Proof. Let T be the optimal time steering System (17) from (0, 0) to (xf , yf ). According to [21,
Chapter 1], it is well-known that optimal controls are bang-bang equal a.e. to M or −M , with at most
one switch, on the so-called switching locus defined by the implicit equation f(x, y) = 0.

More precisely, if s < 0, then the optimal control is u = M1(0,t0) −M1(t0,T ), where t0 ≥ 0 is the
switching time, in other words the first time such that f(x(t), y(t)) = 0. Conversely, if s > 0, then
u = −M1(0,t0) +M1(t0,T ). Easy but lengthy computations yield

• If f(xf , yf ) = 0, then for every t ∈ [0, T ], one has

y(t) = y0 −Mt sign(yf ) and x(t) = xf − yf t−
1

2
Mt2 sign(yf ).

• Conversely, if f(xf , yf ) ̸= 0, then for every t ∈ [0, T ], one has

y(t) = (−yf − sMt)1(0,t0) + (yf + sM(t− 2t0))1(t0,T )

x(t) =
(
xf − yf t− 1

2sMt2
)
1(0,t0) +

(
xf − yf t+ sM(12 t

2 − 2t0t+ t20)
)
1(t0,T ).

To conclude, it is important to notice that if s ̸= 0, then sign(y(t0)) = s, which can be easily seen by
distinguishing between several cases, depending on the sign of yf and s.

To conclude, it remains to compute the switching time t0. We claim that if f(x0, y0) ̸= 0, then

t0 =
1

M

(
−s yf +

√
1

2
y2f + sMxf

)
.

Indeed, t0 is characterised by the equation f(x(t0), y(t0)) = 0, which rewrites as the second order
polynomial equation in the variable t0:

0 =

(
xf − s

1

2M
y2f

)
− yf (1 + s2)t0 − sMt20.

Furthermore, the discriminant of this polynomial is positive. It follows that y(T ) = −yf +sM(T −2t0)
and therefore, T = s

M yf + 2t0. The expected conclusion follows.
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