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Context

Given

K : X → Y is a linear continuous operator, X and Y two Hilbert
spaces

C ⊂ X is a non-empty, closed, convex and bounded set

y ∈ Y ,

we address the following problem:

Does x ∈ C exist such that K x = y ?

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 4 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

Geometric intuition
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Dual functional

Denoting
J : pf 7→ σK C(pf )−⟨y ,pf ⟩,

where
σK C : pf 7→ sup

z∈K C
⟨pf ,z⟩.

Theorem

If there exists pf such that J(pf ) < 0, then there exists no x ∈ C
satisfying K x = y.
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Dual functional

Denoting
J : pf 7→ σC(K

∗pf )+σY (−pf ),

where
σC : v 7→ sup

x∈C
⟨v ,x⟩.

Theorem

If there exists pf such that J(pf ) < 0, then there exists no x ∈ C
satisfying K x ∈ Y .
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Fenchel duality

Denoting, for a set A: δA : x 7→

{
0 if x ∈ A

+∞ if x /∈ A.

Lemma (Reformulation)

There exists x ∈ C such that K x = y if and only if

inf
x∈U

δC(x)+ δ{y}(K x) = 0. (P )

Theorem (Strong duality)

inf
x∈U

δC(x)+ δ{y}(K x) = − inf
pf∈X

J(pf ).
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Regularisation

Consider the regularised dual problem:

inf
pf∈X

J(pf )+
λ

2
∥Apf∥2.

Proposition

We have

∃pf ∈ X , J(pf ) < 0 ⇐⇒ ∃pf ∈ X , J(pf )+
λ

2
∥Apf∥2 < 0

This allows for a large panel of primal-dual minimisation methods.
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General methodology

Theorem

If there exists pf such that J(pf ) < 0, then there exists no x ∈ C
satisfying K x = y.

In practice, to apply this theorem, three steps are required:
1 find a proxy Jd ≃ J such that we can numerically evaluate Jd

2 find pfd such that Jd (pfd ) < 0

3 associate pfd to some pf and check that J(pf ) < 0:

if needed, interpolate pfd into pf

bound discretisation errors ed (pf )
bound round-off errors er (pfd ).
check that Jd (pfd )+ ed (pf )+ er (pfd ) < 0.
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Control problem

Consider the following control problem:
ẏ(t)+Ay(t) = Bu(t) ∀t ∈ [0,T ]

y(0) = y0 ∈ X

u(t) ∈ U ⊂ U ∀t ∈ [0,T ].

(S)

which allows the Duhamel decomposition

y(T , · ;y0,u) = ST y0 + LT u.

We call the constraint set

EU =
{

u, ∀t ∈ [0,T ], u(t) ∈ U
}
⊂ L2(0,T ;U),

where U will be assumed to be non-empty, closed, convex and
bounded in U by M > 0.
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Reachability

Definition

A target yf is U-reachable from y0 in time T if :

∃ u ∈ EU , y(T , · ;u) = yf .

The reachable set ST y0 + LT EU is the set of all U-reachable points
(from y0 in time T ).
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Control of the 1D heat equation

∀ t,x ∈ [0,T ]× [0,1],

ẏ(t,x)−∆y(t,x) = 1ω u(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

y(T ,x) = yf (x) = sin(πx).

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 13 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

State of the Art
Control under constraints

Symmetrical constraints: Berrahmoune (2020), Chen & Rosier
(2022)

Unilateral constraints: Pighin & Zuazua (2018), Antil & al. (2024),
Pouchol, Trélat & Zhang (2024)

Bounded constraints: Wang (2008), Casas & Kunish (2022)
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Link to convex analysis

Theorem
The three following assertions are equivalent:

yf is not U-reachable from y0 in time T

ỹf := yf −ST y0 /∈ LT EU

∃pf ∈ X , σEU (L
∗
T pf )−⟨ỹf ,pf ⟩< 0

And:

L∗T :

{
X → U

pf 7→ (t 7→ B∗p(t)),

where t 7→ p(t) solves the adjoint equation{
ṗ(t) = A∗p(t),

p(T ) = pf .
(A)
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Hypotheses

Suppose that:

V ⊂ X are Hilbert spaces, V dense and continuously embedded
in X .

A : D(A) ⊂ V → X , such that A∗ is continuous and coercive, that
is ∃0 < a0 ≤ a1 satisfying

∀v ,w ∈ D(A∗)×V ,

{
|⟨A∗v ,w⟩| ≤ a1∥v∥V∥w∥V

Re(⟨A∗v ,v⟩) ≥ a0∥v∥2
V .

B : U → X is bounded.
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Discretisation

Let h > 0 and a finite-dimensional subset Vh ⊂ V such that

∀f ∈ X , inf
vh∈Vh

∥A−1f − vh∥V + inf
vh∈Vh

∥(A∗)−1f − vh∥V ≤ C0 h∥f∥,

We consider a space-discretisation over Vh and a implicit Euler
time-discretisation of (A) with time step ∆t and get the following result:

Proposition

∀(pf ,pfh) ∈ X ×Vh, ∀n ∈ {0, . . . ,Nt},

∥p(tn)−ph,n∥ ≤ C1∥pf −pfh∥+
(
C2h2 +C3∆t

)
∥A∗pf∥,

where C1, C2 and C3 are known explicitly and depend only on a0 and
a1.
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Error control
Discretisation errors

Consider

J∆t,h(pfh) = ∆t
Nt

∑
n=1

σU(B∗(Id−∆tA∗
h)

−npfh)

−⟨yf ,pfh⟩+
〈
y0, (Id−∆tA∗

h)
−Nt pfh

〉
.

Assume furthermore that for pfh ∈ Vh, you know how to compute
explicit σU(B∗pfh), ⟨yf ,pfh⟩ and ⟨y0,pfh⟩.

Theorem

For all pf ∈ D(A∗), pfh ∈ Vh, we then have

|J(pf )− J∆t,h(pfh)| ≤1
2 MT∥B∥ ∆t∥A∗pf∥

+(∥y0∥+MT∥B∥)
(

C2h2 +C3 ∆t
)
∥A∗pf∥

+
(
(∥y0∥+MT∥B∥)C1 + ∥yf∥

)
∥pf −pfh∥.
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Error control
Round-off errors

To take into account round-off errors made by during computations on
finite-byte machines, one has to propagate all potential errors using
intervals:

The Intlab library, encoded in Matlab by Siegfried M. Rump, takes care
of it for us.
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General methodology

Theorem

If there exists pf such that J(pf ) < 0, then yf is not U-reachable for
(S) in time T .

In practice, to apply this theorem, three steps are required:
1 discretise J into J∆t,h ≃ J such that we can evaluate J∆t,h

2 find pfh such that J∆t,h(pfh) < 0

3 associate pfh to some pf and check that J(pf ) < 0:

if needed, interpolate pfh into pf

bound discretisation errors ed (pf )
bound round-off errors er (pfh).
check that J∆t,h(pfh)+ ed (pf )+ er (pfh) < 0.
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Control of the 1D heat equation

∀ t,x ∈ [0,T ]× [0,1],

ẏ(t,x)−∆y(t,x) = 1ω u(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

y(T ,x) = yf (x) = sin(πx).
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Choice of Vh

Here we have:

X = L2(0,1) the state space

V = H1
0 (0,1) and D(A) = D(A∗) = H1

0 (0,1)∩H2(0,1).

Two choices of space discretisation are possible:
1. Vh ⊂ D(A) (cubic splines, spectral methods...):

Pros: no interpolation needed, pf = pfh =⇒ ∥pfh −pf∥= 0
Cons: closed formulas more complicated (when possible), heavy
computation costs

2. Vh ̸⊂ D(A) (P1 finite elements, ...):
Pros: easier computations and many closed formulas
Cons: needs interpolating into D(A∗) =⇒ easy and optimal with
cubic splines

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 23 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

Choice of Vh

Here we have:

X = L2(0,1) the state space

V = H1
0 (0,1) and D(A) = D(A∗) = H1

0 (0,1)∩H2(0,1).

Two choices of space discretisation are possible:
1. Vh ⊂ D(A) (cubic splines, spectral methods...):

Pros: no interpolation needed, pf = pfh =⇒ ∥pfh −pf∥= 0
Cons: closed formulas more complicated (when possible), heavy
computation costs

2. Vh ̸⊂ D(A) (P1 finite elements, ...):
Pros: easier computations and many closed formulas
Cons: needs interpolating into D(A∗) =⇒ easy and optimal with
cubic splines

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 23 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

Choice of Vh

Here we have:

X = L2(0,1) the state space

V = H1
0 (0,1) and D(A) = D(A∗) = H1

0 (0,1)∩H2(0,1).

Two choices of space discretisation are possible:
1. Vh ⊂ D(A) (cubic splines, spectral methods...):

Pros: no interpolation needed, pf = pfh =⇒ ∥pfh −pf∥= 0
Cons: closed formulas more complicated (when possible), heavy
computation costs

2. Vh ̸⊂ D(A) (P1 finite elements, ...):
Pros: easier computations and many closed formulas
Cons: needs interpolating into D(A∗)

=⇒ easy and optimal with
cubic splines

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 23 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

Choice of Vh

Here we have:

X = L2(0,1) the state space

V = H1
0 (0,1) and D(A) = D(A∗) = H1

0 (0,1)∩H2(0,1).

Two choices of space discretisation are possible:
1. Vh ⊂ D(A) (cubic splines, spectral methods...):

Pros: no interpolation needed, pf = pfh =⇒ ∥pfh −pf∥= 0
Cons: closed formulas more complicated (when possible), heavy
computation costs

2. Vh ̸⊂ D(A) (P1 finite elements, ...):
Pros: easier computations and many closed formulas
Cons: needs interpolating into D(A∗) =⇒ easy and optimal with
cubic splines

Ivan Hasenohr (UPC) Computer-Assisted Proofs of Non-Reachability April 28th, 2025 23 / 27



Introduction & Convex Analysis Control setting Examples of computer-assisted proofs Conclusion

Control of the heat equation

∀t,x ∈ [0,T ]× [0,1]

ẏ(t,x)−∆y(t,x) = 1ωu(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

yf (x) = 1
50 sin(πx)
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Control of the heat equation

∀t,x ∈ [0,T ]× [0,1]

ẏ(t,x)−∆y(t,x) = 1ωu(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

yf (x) = 1
50 sin(πx)

Proposition

yf is not U-reachable from y0 in
time T = 1. Indeed,

J(pf ) ∈ [−0.0093,−0.0035] < 0.
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Control of the heat equation

∀t,x ∈ [0,T ]× [0,1]
ẏ(t,x)−∆y(t,x) = 1ωu(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

Proposition

The minimal time t⋆ required to
steer y0 to yf satisfies:

t⋆ ≥ 1.15.

Indeed,

J(pf ;1.15) ∈ [−0.0073,−4 ·10−5] < 0.
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Control of the heat equation

∀t,x ∈ [0,T ]× [0,1]
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25 (1−|2x −1|)
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ẏ(t,x)−∆y(t,x) = 1ωu(t,x)

y(0,x) = y0(x) = 0

y(t,0) = y(t,1) = 0

0 ≤ u(t,x) ≤ 1

yf (x) = 1
25 (1−|2x −1|)

Proposition

yf is not U-reachable from y0 in
time T = 1. Indeed,

J(preg
f ) ∈ [−0.0049,−6 ·10−5] < 0.
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Conclusion & Perspectives

Contributions :

A general method to analyse the non-reachability of targets of
linear control problems

Fine explicit estimates for a wide class of parabolic control
problems

Perspectives :

Apply the method for other classes of linear PDEs

For ODEs, develop a method to prove numerically the reachability
of a given target and approximate the reachable set with
guaranteed sets
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Thank you for you attention!
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