Examples of computer-assisted proofs

Conclusion

Computer-Assisted Proofs of Non-Reachability for Linear Parabolic Control Problems with Bounded Constraints

Ivan Hasenohr

PhD student under the supervision of

Camille Pouchol, Yannick Privat and Christophe Zhang

Université Paris Cité

University of Graz

Examples of computer-assisted proofs

Conclusion

2 Control setting

Examples of computer-assisted proofs

4 Conclusion

Examples of computer-assisted proofs

Outline

2 Control setting

3 Examples of computer-assisted proofs

4 Conclusion

Context

Given

- K : X → Y is a linear continuous operator, X and Y two Hilbert spaces
- $\mathbf{C} \subset X$ is a non-empty, closed, convex and bounded set
- *y* ∈ *Y*,

we address the following problem:

Does $x \in \mathbf{C}$ exist such that Kx = y?

Introduction & Convex Analysis

Control setting

Examples of computer-assisted proofs

• y

Conclusion

Introduction & Convex Analysis

Control setting

Examples of computer-assisted proofs

Conclusion

Examples of computer-assisted proofs

Conclusion

Examples of computer-assisted proofs

Conclusion

Examples of computer-assisted proofs

Conclusion

Dual functional

Denoting

$$J: \boldsymbol{p}_{f} \mapsto \boldsymbol{\sigma}_{\boldsymbol{K}\boldsymbol{C}}(\boldsymbol{p}_{f}) - \langle \boldsymbol{y}, \boldsymbol{p}_{f} \rangle,$$

where

$$\sigma_{\mathsf{KC}}: p_{\mathsf{f}} \mapsto \sup_{z \in \mathsf{KC}} \langle p_{\mathsf{f}}, z \rangle.$$

Theorem

Examples of computer-assisted proofs

Conclusion

Dual functional

Denoting

$$J: \boldsymbol{p}_{f} \mapsto \boldsymbol{\sigma}_{\boldsymbol{K}\boldsymbol{C}}(\boldsymbol{p}_{f}) - \langle \boldsymbol{y}, \boldsymbol{p}_{f} \rangle,$$

where

$$\sigma_{KC}: p_f \mapsto \sup_{x \in C} \langle p_f, Kx \rangle.$$

Theorem

Examples of computer-assisted proofs

Conclusion

Dual functional

Denoting

$$J: \boldsymbol{p}_{f} \mapsto \boldsymbol{\sigma}_{\boldsymbol{K}\boldsymbol{C}}(\boldsymbol{p}_{f}) - \langle \boldsymbol{y}, \boldsymbol{p}_{f} \rangle,$$

where

$$\sigma_{\mathsf{KC}}: \underset{\mathsf{x}\in\mathsf{C}}{p_{\mathsf{f}}}\mapsto \sup_{\mathsf{x}\in\mathsf{C}}\langle \mathsf{K}^*p_{\mathsf{f}}, \mathsf{x}\rangle.$$

Theorem

Examples of computer-assisted proofs

Conclusion

Dual functional

Denoting

$$J: \boldsymbol{p}_{f} \mapsto \boldsymbol{\sigma}_{\mathbf{C}}(\boldsymbol{K}^{*}\boldsymbol{p}_{f}) - \langle \boldsymbol{y}, \boldsymbol{p}_{f} \rangle,$$

where

$$\sigma_{\mathbf{C}}: \mathbf{v} \mapsto \sup_{\mathbf{x} \in \mathbf{C}} \langle \mathbf{v}, \mathbf{x} \rangle.$$

Theorem

Examples of computer-assisted proofs

Conclusion

Dual functional

Denoting

$$J: \mathbf{p}_{f} \mapsto \sigma_{\mathbf{C}}(\mathbf{K}^{*}\mathbf{p}_{f}) + \sigma_{\mathbf{\mathcal{Y}}}(-\mathbf{p}_{f}),$$

where

$$\sigma_{\underline{\mathsf{C}}}: \mathsf{v} \mapsto \sup_{\underline{\mathsf{v}} \in \underline{\mathsf{C}}} \langle \mathsf{v}, \underline{\mathsf{v}} \rangle.$$

Theorem

Ľ

Control setting

Examples of computer-assisted proofs

Conclusion

Fenchel duality

$$\delta_{\mathcal{A}}: x \mapsto \begin{cases} 0 & \text{if } x \in \mathcal{A} \\ +\infty & \text{if } x \notin \mathcal{A}. \end{cases}$$

1

Lemma (Reformulation)

There exists $x \in C$ such that Kx = y if and only if

$$\inf_{\mathbf{x}\in U} \delta_{\mathbf{C}}(\mathbf{x}) + \delta_{\{\mathbf{y}\}}(\mathbf{K}\mathbf{x}) = \mathbf{0}.$$
 (P)

Examples of computer-assisted proofs

Conclusion

Fenchel duality

$$\delta_{\mathcal{A}}: x \mapsto egin{cases} 0 & ext{if } x \in \mathcal{A} \ +\infty & ext{if } x \notin \mathcal{A}. \end{cases}$$

1

Lemma (Reformulation)

There exists $x \in C$ such that Kx = y if and only if

$$\inf_{\mathbf{x}\in U} \delta_{\mathbf{C}}(\mathbf{x}) + \delta_{\{\mathbf{y}\}}(\mathbf{K}\mathbf{x}) = \mathbf{0}.$$
 (P)

Theorem (Strong duality)

$$\inf_{\mathbf{x}\in U} \delta_{\mathbf{C}}(\mathbf{x}) + \delta_{\{\mathbf{y}\}}(\mathbf{K}\mathbf{x}) = -\inf_{\mathbf{p}_f\in \mathbf{X}} J(\mathbf{p}_f).$$

Examples of computer-assisted proofs

Conclusion

Regularisation

Consider the regularised dual problem:

$$\inf_{p_f \in X} J(p_f) + \frac{\lambda}{2} \|Ap_f\|^2.$$

Proposition We have

$$\exists p_f \in X, \quad J(p_f) < 0 \quad \Longleftrightarrow \quad \exists p_f \in X, \quad J(p_f) + \frac{\lambda}{2} \|Ap_f\|^2 < 0$$

This allows for a large panel of primal-dual minimisation methods.

Examples of computer-assisted proofs

Conclusion

General methodology

Theorem

General methodology

Theorem

If there exists p_f such that $J(p_f) < 0$, then there exists no $x \in C$ satisfying Kx = y.

In practice, to apply this theorem, three steps are required:

- find a proxy $J_d \simeq J$ such that we can numerically evaluate J_d
- 2 find p_{fd} such that $J_d(p_{fd}) < 0$
- 3 associate p_{fd} to some p_f and check that $J(p_f) < 0$

General methodology

Theorem

If there exists p_f such that $J(p_f) < 0$, then there exists no $x \in C$ satisfying Kx = y.

In practice, to apply this theorem, three steps are required:

- find a proxy $J_d \simeq J$ such that we can numerically evaluate J_d
- If ind p_{fd} such that $J_d(p_{fd}) < 0$
- 3 associate p_{fd} to some p_f and check that $J(p_f) < 0$:
 - if needed, interpolate pfd into pf
 - bound discretisation errors e_d(p_f)
 - bound round-off errors $e_r(p_{fd})$.
 - check that $J_d(p_{fd}) + e_d(p_f) + e_r(p_{fd}) < 0.$

Examples of computer-assisted proofs

2 Control setting

3 Examples of computer-assisted proofs

4 Conclusion

Examples of computer-assisted proofs

Conclusion

Control problem

Consider the following control problem:

$$\begin{cases} \dot{\mathbf{y}}(t) + A\mathbf{y}(t) = B\mathbf{u}(t) & \forall t \in [0, T] \\ \mathbf{y}(0) = \mathbf{y}_0 \in X \\ \mathbf{u}(t) \in \mathcal{U} \subset U & \forall t \in [0, T]. \end{cases}$$
(S)

Examples of computer-assisted proofs

Conclusion

(S)

Control problem

Consider the following control problem:

$$\begin{cases} \dot{y}(t) + Ay(t) = Bu(t) \quad \forall t \in [0, T] \\ y(0) = y_0 \in X \\ u(t) \in \mathcal{U} \subset U \qquad \forall t \in [0, T], \end{cases}$$

which allows the Duhamel decomposition

$$y(T,\cdot;y_0,u)=S_Ty_0+L_Tu.$$

Examples of computer-assisted proofs

Conclusion

(S)

Control problem

Consider the following control problem:

$$\begin{cases} \dot{y}(t) + Ay(t) = Bu(t) \quad \forall t \in [0, T] \\ y(0) = y_0 \in X \\ u(t) \in \mathcal{U} \subset U \qquad \forall t \in [0, T], \end{cases}$$

which allows the Duhamel decomposition

$$y(T,\cdot;y_0,u)=S_Ty_0+L_Tu.$$

We call the constraint set

$$\boldsymbol{E}_{\boldsymbol{\mathcal{U}}} = \left\{ \boldsymbol{u}, \quad \forall t \in [0, T], \ \boldsymbol{u}(t) \in \boldsymbol{\mathcal{U}} \right\} \subset L^2(0, T; \boldsymbol{U}),$$

where \mathcal{U} will be assumed to be non-empty, closed, convex and bounded in *U* by M > 0.

Ivan Hasenohr (UPC)

Examples of computer-assisted proofs

Conclusion

Reachability

Definition

A target y_f is \mathcal{U} -reachable from y_0 in time T if :

$$\exists u \in E_{\mathcal{U}}, \quad y(T, \cdot; u) = y_f.$$

The reachable set $S_T y_0 + L_T E_{\mathcal{U}}$ is the set of all \mathcal{U} -reachable points (from y_0 in time T).

Introduction & Convex Analysis

Control setting

Examples of computer-assisted proofs

Conclusion

Control of the 1D heat equation

$$\forall t, x \in [0, T] \times [0, 1],$$

$$\begin{cases} \dot{y}(t, x) - \Delta y(t, x) = \mathbb{1}_{\omega} u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ 0 \le u(t, x) \le 1 \\ y(T, x) = y_f(x) = \sin(\pi x). \end{cases}$$

State of the Art

Control under constraints

- Symmetrical constraints: Berrahmoune (2020), Chen & Rosier (2022)
- Unilateral constraints: Pighin & Zuazua (2018), Antil & al. (2024), Pouchol, Trélat & Zhang (2024)
- Bounded constraints: Wang (2008), Casas & Kunish (2022)

Examples of computer-assisted proofs

Link to convex analysis

Theorem

The three following assertions are equivalent:

- y_f is not \mathcal{U} -reachable from y_0 in time T
- $\tilde{y}_f := y_f S_T y_0 \notin L_T E_{\mathcal{U}}$
- $\exists p_f \in X$, $\sigma_{E_{\mathcal{U}}}(L_T^*p_f) \langle \tilde{y}_f, p_f \rangle < 0$

Examples of computer-assisted proofs

Conclusion

Link to convex analysis

Theorem

The three following assertions are equivalent:

• y_f is not \mathcal{U} -reachable from y_0 in time T

•
$$\tilde{y}_f := y_f - S_T y_0 \notin L_T E_{\mathcal{U}}$$

• $\exists p_f \in X$, $\sigma_{E_{\mathcal{U}}}(L_T^* p_f) - \langle \tilde{y}_f, p_f \rangle < 0$

And:

$$L_T^*: \begin{cases} X \to U\\ p_f \mapsto (t \mapsto B^* p(t)), \end{cases}$$

where $t \mapsto p(t)$ solves the adjoint equation

$$\begin{cases} \dot{\boldsymbol{p}}(t) = \boldsymbol{A}^* \boldsymbol{p}(t), \\ \boldsymbol{p}(T) = \boldsymbol{p}_f. \end{cases}$$
(A)

Hypotheses

Suppose that:

- *V* ⊂ *X* are Hilbert spaces, *V* dense and continuously embedded in *X*.
- A: D(A) ⊂ V → X, such that A^{*} is continuous and coercive, that is ∃0 < a₀ ≤ a₁ satisfying

$$\forall \mathbf{v}, \mathbf{w} \in \mathcal{D}(\mathbf{A}^*) \times \mathbf{V}, \quad \begin{cases} |\langle \mathbf{A}^* \mathbf{v}, \mathbf{w} \rangle| \leq a_1 \|\mathbf{v}\|_V \|\mathbf{w}\|_V \\ \operatorname{Re}(\langle \mathbf{A}^* \mathbf{v}, \mathbf{v} \rangle) \geq a_0 \|\mathbf{v}\|_V^2. \end{cases}$$

• $B: U \rightarrow X$ is bounded.

Let h > 0 and a finite-dimensional subset $V_h \subset V$ such that

$$\forall f \in X, \quad \inf_{v_h \in V_h} \|A^{-1}f - v_h\|_V + \inf_{v_h \in V_h} \|(A^*)^{-1}f - v_h\|_V \le C_0 h \|f\|,$$

We consider a space-discretisation over V_h and a implicit Euler time-discretisation of (\mathcal{A}) with time step Δt and get the following result:

Proposition

$$\forall (\mathbf{p}_{f}, \mathbf{p}_{fh}) \in X \times V_{h}, \quad \forall n \in \{0, \dots, N_{t}\},\$$

 $\|p(t_n) - p_{h,n}\| \le C_1 \|p_f - p_{fh}\| + (C_2 h^2 + C_3 \Delta t) \|A^* p_f\|,$

where C_1 , C_2 and C_3 are known explicitly and depend only on a_0 and a_1 .

Introduction	Convex	Analysis	
0000000			

Examples of computer-assisted proofs

Conclusion

Error control

Discretisation errors

Consider

$$J_{\Delta t,h}(p_{fh}) = \Delta t \sum_{n=1}^{N_t} \sigma_{\mathcal{U}}(B^* (\operatorname{Id} - \Delta t A_h^*)^{-n} p_{fh}) - \langle \mathbf{y}_f, p_{fh} \rangle + \langle y_0, (\operatorname{Id} - \Delta t A_h^*)^{-N_t} p_{fh} \rangle$$

Assume furthermore that for $p_{fh} \in V_h$, you know how to compute explicit $\sigma_{\mathcal{U}}(B^*p_{fh}), \langle y_f, p_{fh} \rangle$ and $\langle y_0, p_{fh} \rangle$.

Theorem

For all $p_f \in \mathcal{D}(A^*)$, $p_{fh} \in V_h$, we then have

$$\begin{aligned} |J(p_{f}) - J_{\Delta t,h}(p_{fh})| &\leq \frac{1}{2}MT \|B\| \Delta t \|A^{*}p_{f}\| \\ &+ (\|y_{0}\| + MT\|B\|) \Big(C_{2}h^{2} + C_{3} \Delta t\Big) \|A^{*}p_{f}\| \\ &+ \big((\|y_{0}\| + MT\|B\|) C_{1} + \|y_{f}\|\big) \|p_{f} - p_{fh}\|. \end{aligned}$$

The Intlab library, encoded in Matlab by Siegfried M. Rump, takes care of it for us.

Ivan Hasenohr (UPC)

Examples of computer-assisted proofs •0000 Conclusion

Outline

2 Control setting

3 Examples of computer-assisted proofs

Conclusion

General methodology

Theorem

If there exists p_f such that $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable for (*S*) in time *T*.

In practice, to apply this theorem, three steps are required:

- discretise J into $J_{\Delta t,h} \simeq J$ such that we can evaluate $J_{\Delta t,h}$
- 3 find p_{fh} such that $J_{\Delta t,h}(p_{fh}) < 0$
- 3 associate p_{fh} to some p_f and check that $J(p_f) < 0$:
 - if needed, interpolate p_{fh} into p_f
 - bound discretisation errors e_d(p_f)
 - bound round-off errors $e_r(p_{fh})$.
 - check that $J_{\Delta t,h}(p_{fh}) + e_d(p_f) + e_r(p_{fh}) < 0.$

Introduction & Convex Analysis

Control setting

Examples of computer-assisted proofs

Conclusion

Control of the 1D heat equation

$$\forall t, x \in [0, T] \times [0, 1],$$

$$\begin{cases} \dot{y}(t, x) - \Delta y(t, x) = \mathbb{1}_{\omega} u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ 0 \le u(t, x) \le 1 \\ y(T, x) = y_f(x) = \sin(\pi x). \end{cases}$$

Here we have:

- $X = L^2(0, 1)$ the state space
- $V = H_0^1(0,1)$ and $\mathcal{D}(A) = \mathcal{D}(A^*) = H_0^1(0,1) \cap H^2(0,1)$.

Here we have:

- $X = L^2(0, 1)$ the state space
- $V = H_0^1(0, 1)$ and $\mathcal{D}(A) = \mathcal{D}(A^*) = H_0^1(0, 1) \cap H^2(0, 1)$.

Two choices of space discretisation are possible:

- 1. $V_h \subset \mathcal{D}(A)$ (cubic splines, spectral methods...):
 - Pros: no interpolation needed, $p_f = p_{fh} \implies ||p_{fh} p_f|| = 0$
 - Cons: closed formulas more complicated (when possible), heavy computation costs

Here we have:

- $X = L^2(0, 1)$ the state space
- $V = H_0^1(0,1)$ and $\mathcal{D}(A) = \mathcal{D}(A^*) = H_0^1(0,1) \cap H^2(0,1)$.

Two choices of space discretisation are possible:

- 1. $V_h \subset \mathcal{D}(A)$ (cubic splines, spectral methods...):
 - Pros: no interpolation needed, $p_f = p_{fh} \implies ||p_{fh} p_f|| = 0$
 - Cons: closed formulas more complicated (when possible), heavy computation costs
- 2. $V_h \not\subset \mathcal{D}(A)$ (\mathbb{P}_1 finite elements, ...):
 - Pros: easier computations and many closed formulas
 - Cons: needs interpolating into $\mathcal{D}(\mathbf{A}^*)$

Here we have:

- $X = L^2(0, 1)$ the state space
- $V = H_0^1(0, 1)$ and $\mathcal{D}(A) = \mathcal{D}(A^*) = H_0^1(0, 1) \cap H^2(0, 1)$.

Two choices of space discretisation are possible:

- 1. $V_h \subset \mathcal{D}(A)$ (cubic splines, spectral methods...):
 - Pros: no interpolation needed, $p_f = p_{fh} \implies ||p_{fh} p_f|| = 0$
 - Cons: closed formulas more complicated (when possible), heavy computation costs
- 2. $V_h \not\subset \mathcal{D}(A)$ (\mathbb{P}_1 finite elements, ...):
 - Pros: easier computations and many closed formulas
 - Cons: needs interpolating into $\mathcal{D}(\textit{A}^*) \Longrightarrow$ easy and optimal with cubic splines

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{50} \sin(\pi x) \end{cases}$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{50} \sin(\pi x) \end{cases}$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{50} \sin(\pi x) \end{cases}$$

Proposition

 y_f is not \mathcal{U} -reachable from y_0 in time T = 1. Indeed,

$$J(p_f) \in [-0.0093, -0.0035] < 0.$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

$$\forall t, x \in [0, T] \times [0, 1]$$

$$\begin{cases} \dot{y}(t, x) - \Delta y(t, x) = \mathbb{1}_{\omega} u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ 0 \le u(t, x) \le 1 \end{cases}$$

Proposition

The minimal time t^* required to steer y_0 to y_f satisfies:

 $t^{\star} \ge 1.15.$

Indeed,

$$J(p_f; 1.15) \in [-0.0073, -4 \cdot 10^{-5}] < 0.$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{25} (1 - |2x - 1|) \end{cases}$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{25}(1 - |2x - 1|) \end{cases}$$

Examples of computer-assisted proofs

Conclusion

Control of the heat equation

 $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) = \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y_f(x) = \frac{1}{25}(1 - |2x - 1|) \end{cases}$$

Proposition

 y_f is not \mathcal{U} -reachable from y_0 in time T = 1. Indeed,

$$J(p_f^{reg}) \in [-0.0049, -6 \cdot 10^{-5}] < 0.$$

Examples of computer-assisted proofs

Outline

2 Control setting

3 Examples of computer-assisted proofs

4 Conclusion

Conclusion & Perspectives

Contributions :

- A general method to analyse the non-reachability of targets of linear control problems
- Fine explicit estimates for a wide class of parabolic control problems

Perspectives :

- Apply the method for other classes of linear PDEs
- For ODEs, develop a method to prove numerically the reachability of a given target and approximate the reachable set with guaranteed sets

Thank you for you attention!