Computer-assisted proofs of non-reachability for linear parabolic control systems

Ivan Hasenohr

PhD student under the supervision of Camille Pouchol, Yannick Privat et Christophe Zhang

Université Paris Cité

Congrès des Jeunes Chercheur.e.s en Mathématiques Appliquées

Outline

2 Method & results

- Separation argument
- Discretisation & error control
- 3 Numerical applications

Outline

Context & objectives

2 Method & results

- Separation argument
- Discretisation & error control

3 Numerical applications

4 Conclusion

Context	&	objectives
0000		

Numerical applications

Conclusion

	1.2					
$\forall t, x \in [0, T] \times [0, 1],$	0.8 -					
$\int \dot{y}(t,x) = \Delta y(t,x)$	0.6 -					
$\begin{cases} y(0, x) = 0\\ y(t, 0) = y(t, 1) = 0. \end{cases}$	0.4 -					
	0.2 -					
	0.0 -					
	-0.2	0.2	0.4	0.6	0.8	1.0

Context	&	objectives
0000		

Numerical applications

Conclusion

Context	&	objectives
0000		

Numerical applications

Conclusion

$$\forall t, x \in [0, T] \times [0, 1],$$

$$\begin{cases} \dot{y}(t, x) = \Delta y(t, x) + u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ u(t, x) \in \mathbb{R}. \end{cases}$$

Context	&	ob	ectives
0000			

Numerical applications

0.4

0.2

0.6

Motivation

$$\forall t, x \in [0, T] \times [0, 1],$$

$$\begin{cases} \dot{y}(t, x) = \Delta y(t, x) + u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ u(t, x) \in \mathbb{R} \\ y(T, x) = y_f(x) = \sin(\pi x). \end{cases}$$

1.2 -

-0.2

1.0

0.8

Context	&	ob	ectives
0000			

Numerical applications

Motivation

$$\forall t, x \in [0, T] \times [0, 1],$$

$$\begin{cases} \dot{y}(t, x) = \Delta y(t, x) + u(t, x) \\ y(0, x) = y_0(x) = 0 \\ y(t, 0) = y(t, 1) = 0 \\ 0 \le u(t, x) \\ y(T, x) = y_f(x) = \sin(\pi x). \end{cases}$$

1.2 -

-0.2

0.2

0.4

0.6

1.0

0.8

Context	&	ob	ect	ives
0000				

Numerical applications

Context	&	ob	ectives
0000			

Numerical applications

(S)

Control system

We call linear control system

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) \quad \forall t \in [0, T] \\ y(0) = y_0 \\ u(t) \in \mathcal{U}_0 \qquad \forall t \in [0, T]. \end{cases}$$

Which allows the Duhamel decomposition

$$y(T,\cdot;y_0,u)=S_Ty_0+L_Tu.$$

We call the constraint set

$$\mathcal{U} = \left\{ \boldsymbol{u}, \quad \forall t \in [0, T], \ \boldsymbol{u}(t) \in \mathcal{U}_0 \right\}.$$

Control system

We call linear control system

$$\begin{cases} \dot{\mathbf{y}}(t) = A\mathbf{y}(t) + B\mathbf{u}(t) & \forall t \in [0, T] \\ \mathbf{y}(0) = 0 & (S) \\ \mathbf{u}(t) \in \mathcal{U}_0 & \forall t \in [0, T]. \end{cases}$$

Which allows the Duhamel decomposition

$$y(T,\cdot;u)=L_Tu.$$

We call the constraint set

$$\mathcal{U} = \left\{ \boldsymbol{u}, \quad \forall t \in [0, T], \ \boldsymbol{u}(t) \in \mathcal{U}_0 \right\}.$$

Reachability

Definition

A target y_f is \mathcal{U} -reachable in time T if :

$$\exists u \in \mathcal{U}, y(T, \cdot; u) = y_f.$$

We call reachable set and denote $L_T \mathcal{U}$ the set of all \mathcal{U} -reachable points.

Outline

Context & objectives

2

Method & results

- Separation argument
- Discretisation & error control

3 Numerical applications

4 Conclusion

Numerical applications

Conclusion

Non-reachability : Geometric intuition

 $L_T \mathcal{U}$

Numerical applications

Conclusion

Non-reachability : Geometric intuition

 p_f

Numerical applications

Conclusion

Non-reachability : Geometric intuition

Numerical applications

Conclusion

Non-reachability : Geometric intuition

Numerical applications

Conclusion

Non-reachability : theorem

Denoting

$$J: p_f \mapsto \sigma_{L_T \mathcal{U}}(p_f) - \langle p_f, y_f \rangle,$$

where

$$\sigma_{L_{\mathcal{T}}} : p_f \mapsto \sup_{x \in L_{\mathcal{T}}} \langle x, p_f \rangle.$$

Theorem

Numerical applications

Conclusion

Non-reachability : theorem

Denoting

$$J: p_{f} \mapsto \sigma_{L_{T} \mathcal{U}}(p_{f}) - \langle p_{f}, y_{f} \rangle,$$

where

$$\sigma_{L_{\mathcal{T}}\mathcal{U}}: p_f \mapsto \sup_{u \in \mathcal{U}} \langle L_{\mathcal{T}}u, p_f \rangle.$$

Theorem

Numerical applications

Conclusion

Non-reachability : theorem

Denoting

$$J: p_f \mapsto \sigma_{L_T \mathcal{U}}(p_f) - \langle p_f, y_f \rangle,$$

where

$$\sigma_{L_T \mathcal{U}}: p_f \mapsto \sup_{u \in \mathcal{U}} \langle u, L_T^* p_f \rangle.$$

Theorem

Numerical applications

Conclusion

Non-reachability : theorem

Denoting

$$J: p_{f} \mapsto \sigma_{\mathcal{U}}(L_{T}^{*}p_{f}) - \langle p_{f}, y_{f} \rangle,$$

where

$$\sigma_{\mathcal{U}}: v \mapsto \sup_{u \in \mathcal{U}} \langle u, v \rangle.$$

Theorem

Context & objectives	Method & results	Numerical applications	Conclusion
Method			

Theorem

Context & objectives	Method & results ○○○●○○○○	Numerical applications	Conclusion
Method			

Theorem

If there exists p_f such that $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable for (*S*) in time *T*.

To use this theorem to prove the non-reachability of y_f , three steps are required :

- discretise J into $J_{\Delta t,h} \simeq J$ such that we can evaluate $J_{\Delta t,h}$
- 3 find p_{fh} such that $J_{\Delta t,h}(p_{fh}) < 0$
- 3 associate p_{fh} to some p_f and check that $J(p_f) < 0$

Context & objectives	Method & results	Numerical applications	Conclusion
Method			

Theorem

If there exists p_f such that $J(p_f) < 0$, then y_f is not \mathcal{U} -reachable for (S) in time T.

To use this theorem to prove the non-reachability of y_f , three steps are required :

- discretise J into $J_{\Delta t,h} \simeq J$ such that we can evaluate $J_{\Delta t,h}$
- 3 find p_{fh} such that $J_{\Delta t,h}(p_{fh}) < 0$
- 3 associate p_{fh} to some p_f and check that $J(p_f) < 0$:
 - interpolate p_{fh} into p_f
 - bound discretisation errors e_d(p_f)
 - bound round-off errors $e_r(p_f)$.
 - check that $J_{\Delta t,h}(p_f) + e_d(p_f) + e_r(p_f) < 0.$

Context	objectives
0000	

Numerical applications

Conclusion

Computing *J*

J can be reformulated as :

$$J: \mathbf{p}_{f} \mapsto \int_{0}^{T} \sigma_{\mathcal{U}_{0}}(\mathbf{B}^{*} S_{T-t}^{*} \mathbf{p}_{f}) \, \mathrm{d}t - \langle \mathbf{p}_{f}, \mathbf{y}_{f} \rangle,$$

where we assume $\sigma_{\mathcal{U}_0}$ has a known closed-form expression.

Context	objectives
0000	

Numerical applications

Conclusion

Computing *J*

J can be reformulated as :

$$J: \mathbf{p}_{f} \mapsto \int_{0}^{T} \sigma_{\mathcal{U}_{0}}(\mathbf{B}^{*} S^{*}_{T-t} \mathbf{p}_{f}) \, \mathrm{d}t - \langle \mathbf{p}_{f}, \mathbf{y}_{f} \rangle,$$

where we assume $\sigma_{\mathcal{U}_0}$ has a known closed-form expression.

Time discretisation – Implicit Euler scheme :

$$J_{\Delta t}(\boldsymbol{p}_{f}) = \Delta t \sum_{n=0}^{N_{t}-1} \sigma_{\mathcal{U}_{0}}(\boldsymbol{B}^{*}(\mathsf{Id} - \Delta t\boldsymbol{A}^{*})^{-(Nt-n)}\boldsymbol{p}_{f}) - \langle \boldsymbol{p}_{f}, \boldsymbol{y}_{f} \rangle,$$

Context	objectives
0000	

Numerical applications

Conclusion

Computing *J*

J can be reformulated as :

$$J: \mathbf{p}_{f} \mapsto \int_{0}^{T} \sigma_{\mathcal{U}_{0}}(\mathbf{B}^{*} S^{*}_{T-t} \mathbf{p}_{f}) \, \mathrm{d}t - \langle \mathbf{p}_{f}, \mathbf{y}_{f} \rangle,$$

where we assume $\sigma_{\mathcal{U}_0}$ has a known closed-form expression.

Time discretisation – Implicit Euler scheme :

$$J_{\Delta t}(\boldsymbol{p}_{f}) = \Delta t \sum_{n=0}^{N_{t}-1} \sigma_{\mathcal{U}_{0}}(\boldsymbol{B}^{*}(\mathsf{Id} - \Delta t\boldsymbol{A}^{*})^{-(Nt-n)}\boldsymbol{p}_{f}) - \langle \boldsymbol{p}_{f}, \boldsymbol{y}_{f} \rangle,$$

Space discretisation - P1 finite elements :

$$J_{\Delta t,h}(\boldsymbol{p}_{fh}) = \Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B_h^*(\mathrm{Id} - \Delta t A_h^*)^{-(Nt-n)} \boldsymbol{p}_{fh}) - \langle \boldsymbol{p}_{fh}, \boldsymbol{y}_{fh} \rangle.$$

Numerical applications

Hypotheses on A

Let A verify :

Numerical applications

Conclusion

Hypotheses on A

Let A verify :

• M α -accretivity : for $0 < \alpha < \frac{\pi}{2}$,

 $\forall v \in \mathcal{D}(A), \quad \langle Av, v \rangle \in \mathcal{S}_{\alpha} \text{ and,}$

 $\forall z \notin \mathcal{S}_{\alpha}, z \mid -A \text{ is an isomorphism}$ from $\mathcal{D}(A)$ to H.

Numerical applications

Conclusion

Hypotheses on A

Let A verify :

• M α -accretivity : for 0 < $\alpha < \frac{\pi}{2}$,

 $\forall v \in \mathcal{D}(A), \quad \langle Av, v \rangle \in \mathcal{S}_{\alpha} \text{ and,}$

 $\forall z \notin \mathcal{S}_{\alpha}, z \mid -A \text{ is an isomorphism}$ from $\mathcal{D}(A)$ to H.

• Coercivity : for $a_1 > 0$

 $\forall \mathbf{v} \in \mathcal{D}(\mathbf{A}), \quad \mathsf{Re}\langle \mathbf{A}\mathbf{v}, \mathbf{v} \rangle \geq a_1 \|\mathbf{v}\|^2.$

Numerical applications

Conclusion

Hypotheses on A

Let A verify :

• M α -accretivity : for 0 < $\alpha < \frac{\pi}{2}$,

 $\forall v \in \mathcal{D}(A), \quad \langle Av, v \rangle \in \mathcal{S}_{\alpha} \text{ and,}$

 $\forall z \notin S_{\alpha}, z \mid -A \text{ is an isomorphism}$ from $\mathcal{D}(A)$ to H.

• Coercivity : for $a_1 > 0$

 $\forall \mathbf{v} \in \mathcal{D}(\mathbf{A}), \quad \mathsf{Re}\langle \mathbf{A}\mathbf{v}, \mathbf{v} \rangle \geq a_1 \|\mathbf{v}\|^2.$

• Continuity : for $0 < a_0 \le a_1$,

 $\forall \mathbf{v}, \mathbf{w} \in \mathcal{D}(\mathbf{A}) \times \mathbf{V}, \quad |\langle \mathbf{A}\mathbf{v}, \mathbf{w} \rangle| \leq a_0 \|\mathbf{v}\| \|\mathbf{w}\|.$

Discretisation error

Theorem

Let $p_{fh} \in V_h$ and $p_f \in \mathcal{D}(A^*)$ such that $\forall i \in \{0, ..., N_x\}$, $p_{fh}(ih) = p_f(ih)$. Then, if A satisfy the previously stated hypotheses, we have

 $e_d(p_f) = |J(p_f) - J_{\Delta t,h}(p_{fh})| \le (C_1 \Delta t + C_2 h^2) \|A^* p_f\|$

Discretisation error

Theorem

Let $p_{fh} \in V_h$ and $p_f \in \mathcal{D}(A^*)$ such that $\forall i \in \{0, ..., N_x\}$, $p_{fh}(ih) = p_f(ih)$. Then, if A satisfy the previously stated hypotheses, we have

$$\boldsymbol{e}_{d}(\boldsymbol{p}_{f}) = |J(\boldsymbol{p}_{f}) - J_{\Delta t,h}(\boldsymbol{p}_{fh})| \leq (C_{1}\Delta t + C_{2}h^{2}) \|\boldsymbol{A}^{*}\boldsymbol{p}_{f}\|,$$

with

$$\begin{aligned} C_1 &= \frac{1}{2} MT \|B\| + \frac{C_{\alpha}}{\cos(\alpha)} \Big(\|y_0\|_X + MT \|B\| \Big) \\ C_2 &= \left(\frac{a_1^2 C_0^2}{a_0} \left(7 + \frac{4\ln(2)}{\cos(\alpha)} + C_{\alpha} \right) + C_{\alpha} C_0 \right) \Big(\|y_0\|_X + MT \|B\| \Big) \\ C_{\alpha} &\leq 2 + \frac{2}{\sqrt{3}} \qquad \& \qquad C_0 = \frac{1}{2}. \end{aligned}$$

The Intlab library, encoded in Matlab by Siegfried M. Rump, takes care of it for us.

Ivan Hasenohr (UPC)

Outline

Context & objectives

2 Method & results

- Separation argument
- Discretisation & error control

3 Numerical applications

4 Conclusion

Context	objectives
0000	

Numerical applications

Numerical example

Back to the original example : $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) = \Delta y(t,x) + \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = y_0(x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y(T,x) = y_f(x) = \sin(\pi x). \end{cases}$$

Context	objectives
0000	

Numerical applications

Conclusion

Numerical example

Back to the original example : $\forall t, x \in [0, T] \times [0, 1]$

$$\begin{cases} \dot{y}(t,x) = 0.1 \Delta y(t,x) + \mathbb{1}_{\omega} u(t,x) \\ y(0,x) = 0 \\ y(t,0) = y(t,1) = 0 \\ 0 \le u(t,x) \le 1 \\ y(T,x) = y_f(x) = 0.21 \sin(\pi x). \end{cases}$$

Context	objectives
0000	

Numerical applications

Numerical example

Back to the original example :

 $y_f = 0.21 \sin(\pi \cdot).$

Is $y_f \mathcal{U}$ -reachable in time T = 1?

Context	objectives
0000	

Numerical applications

Numerical example

Back to the original example :

 $y_f = 0.21 \sin(\pi \cdot).$

Is $y_f \mathcal{U}$ -reachable in time T = 1?

Numerical applications

Numerical example

Back to the original example :

 $y_f = 0.21 \sin(\pi \cdot).$

Is $y_f \mathcal{U}$ -reachable in time T = 1?

Proposition

 y_f is not \mathcal{U} -reachable in time T = 1. Indeed,

$$J(p_f) \in [-0.0093, -0.0035] < 0.$$

Numerical applications

Numerical example

Back to the original example :

 $y_f = 0.21 \sin(\pi \cdot).$

What is a guaranteed lower-bound of the minimal time of reachability t^* of y_f ?

Numerical applications

Numerical example

Back to the original example :

 $y_f = 0.21 \sin(\pi \cdot).$

What is a guaranteed lower-bound of the minimal time of reachability t^* of y_f ?

Method

To prove the non-reachability of y_f , three steps are required :

- discretise J into $J_{\Delta t,h} \simeq J$ such that we can evaluate $J_{\Delta t,h}$
- 2 find p_{fh} such that $J_{\Delta t,h}(p_{fh}) < 0$

3 associate p_{fh} to some p_f and check that $J(p_f) < 0$:

- interpolate p_{fh} into p_f
- bound discretisation errors e_d(p_f)
- bound round-off errors $e_r(p_f)$.
- check that $J_{\Delta t,h}(p_f) + e_d(p_f) + e_r(p_f) < 0$.

Method

To prove the non-reachability of y_f , three steps are required :

- discretise J into $J_{\Delta t,h} \simeq J$ such that we can evaluate $J_{\Delta t,h}$
- 2 find p_{fh} such that $J_{\Delta t,h}(p_{fh}) < 0$

3 associate p_{fh} to some p_f and check that $J(p_f) < 0$:

- interpolate p_{fh} into p_f
- bound discretisation errors $e_d(p_f)$
- bound round-off errors $e_r(p_f)$.
- check that $J_{\Delta t,h}(p_f) + e_d(p_f) + e_r(p_f) < 0.$

		0000	00
Cubic spline i	nterpolation		

 $\forall i \in \{0, \ldots, N_x\}, \quad p_f(ih) = p_{fh}(ih).$

For a given p_{fh} P1 element, we need to find $p_f \in \mathcal{D}(A)$ such that

Ivan Hasenohr (UPC)

Context & objectives	Method & results	Numerical applications	Conclusion

Cubic spline interpolation

For a given p_{fh} P1 element, we need to find $p_f \in \mathcal{D}(A)$ such that

$$\forall i \in \{0, \ldots, N_x\}, \quad p_f(ih) = p_{fh}(ih).$$

Lemma

If $A = \Delta$, cubic splines are the optimal way to interpolate p_{fh} , in the sense that

$$\inf_{\substack{p_f \in \mathcal{D}(\Delta)}} \|\Delta p_f\| = \inf_{\substack{p_f \in \mathcal{D}(\Delta)\\p_f \text{ cubic spline}}} \|\Delta p_f\|.$$

Furthermore, the inf is reached, the optimal spline has a closed-form expression satisfying $p_f \in C^2([0,1])$.

Context & objectives	Method & results	Numerical applications	Conclusion

Cubic spline interpolation

For a given p_{fh} P1 element, we need to find $p_f \in \mathcal{D}(A)$ such that

$$\forall i \in \{0,\ldots,N_x\}, \quad p_f(ih) = p_{fh}(ih).$$

Lemma

If $A = \Delta$, cubic splines are the optimal way to interpolate p_{fh} , in the sense that

$$\inf_{\substack{\boldsymbol{p}_f \in \mathcal{D}(\Delta)}} \|\Delta \boldsymbol{p}_f\| = \inf_{\substack{\boldsymbol{p}_f \in \mathcal{D}(\Delta)\\ \boldsymbol{p}_f \text{ cubic spline}}} \|\Delta \boldsymbol{p}_f\|.$$

Furthermore, the inf is reached, the optimal spline has a closed-form expression satisfying $p_f \in C^2([0,1])$.

Recall :

$$e_d(p_f) = |J(p_f) - J_{\Delta t,h}(p_{fh})| \le (C_1 \Delta t + C_2 h^2) \|\Delta p_f\|.$$

po ooooooo ooo oo

Cubic spline interpolation

For a given p_{fh} P1 element, we need to find $p_f \in \mathcal{D}(A)$ such that

$$\forall i \in \{0,\ldots,N_x\}, \quad p_f(ih) = p_{fh}(ih).$$

Lemma

If $A = \Delta$, cubic splines are the optimal way to interpolate p_{fh} , in the sense that

$$\inf_{\substack{p_f \in \mathcal{D}(\Delta) \\ p_f \in \mathcal{D}(\Delta)}} \|\Delta p_f\| = \inf_{\substack{p_f \in \mathcal{D}(\Delta) \\ p_f \text{ cubic spline}}} \|\Delta p_f\|.$$

Furthermore, the inf is reached, the optimal spline has a closed-form expression satisfying $p_f \in C^2([0,1])$.

Recall :

$$e_d(p_f) = |J(p_f) - J_{\Delta t,h}(p_{fh})| \le (C_1 \Delta t + C_2 h^2) \|\Delta p_f\|.$$

Outline

Context & objectives

2 Method & results

- Separation argument
- Discretisation & error control

3 Numerical applications

Conclusion and perspectives

Contributions :

- A general method to analyse the non-reachability of targets of linear control problems
- Fine explicit estimates for a wide class of parabolic control problems

Perspectives :

- Apply the method for other classes of linear PDEs
- For ODEs, develop a method to prove numerically the reachability of a given target and approximate the reachable set with guaranteed sets (*work in progress*)